V.N.Orekhovich Institute of Biomedical Chemistry RAMS, Moscow, Russia

PLATFORM «FROM GENE TO LEAD COMPOUND»: INTEGRATION IN SILICO AND IN VITRO TECHNOLOGIES

Prof. A. S. Ivanov

Novosibirsk - 2008

BGRS-2008

1

Integral Pipeline "From Gene to Drug"

Comparative genomes analysis

Let's consider the example of molecular targets search for new antibacterial drugs

Drug	Target
Biomedical requi	rements
Effective suppression of growth and reproduction	
of micro-organism	Important for growth and reproduction
Lethality to pathogen	Essential for survival
Definite antimicrobial spectrum	Occurs in all target microbial species and strains
Selectivity: minimal host toxicity	Absent in host (human)
Selectivity: minimal alteration of normal microflora	Absent in host's (human) symbiont bacteria
Low risk of resistance	Conserved in all target strains
Technological requ	urements
Target-based CADD	Available 3D structure
Definite mechanism of action	Known function
CADD, computer-aided drug discovery.	

Comparative genomes analysis

Potential Targets Found in Genome of *M. tuberculosis*

Target no.	Gene	Target protein
1.	infA	Translation initiation factor IF-1
2.	hupB	Histone-like protein
3.	rpoA	DNA-directed RNA polymerase (transcriptase) alpha chain
4.	rpsD	30S ribosomal protein S4
5.	rpsE	30S ribosomal protein S5
6.	rpsH	30S ribosomal protein S8
7.	$\overline{b}frA$	Bacterioferritin
<mark>8.</mark>	kdtB	Phosphopantetheine adenylyltransferase
9.	glcB	Malate synthase G
10.	purE	Phosphoribosylaminoimidazole carboxylase catalytic subunit
11.	ruvA	Holliday junction DNA helicase
12.	<i>trpB</i>	Tryptophan synthase beta chain
13.	mscL	Large-conductance mechanosensitive channel

Bioinformatics Platform Development

From Gene to Lead Compound

Alexis S. Ivanov, Alexander V. Veselovsky, Alexander V. Dubanov, Vladlen S. Skvortsov

Methods Mol. Biol. 2006, 316, 389-431.

Integral Pipeline "From Gene to Drug"

What method of target validation to choose?

Loss-of-function strategies: Which way to go?

Targets validation approaches

The main tasks of targets validation:

- maximal reduction in the number of potential targets
- obtainment of additional information for target prioritization

1. Proteomic methods

- 2. Genomic methods
- 3. Target inactivation

- Examination of target proteins expression
- Examination of Target Expression In Different Strains
- Analysis of protein-protein interactions

3. Target inactivation

3. Target inactivation

3. Target inactivation

Integral Pipeline "From Gene to Drug"

Targets Prioritization

Integral Pipeline "From Gene to Drug"

Sample of pure and native protein

Popular «lables»

HisTag (**6 x His)** + Ni ²⁺ + NTA

Glutathione S-Transferase (GST) + Glutathione (tripeptide = Glu-Cys-Gly)

6xHistidine-tag protein binding to Ni-NTA resin

Potential Targets Found in Genome of *M. tuberculosis*

Target no.	Gene	Target protein		
1.	infA	Translation initiation factor IF-1		
2.	hupB	Histone-like protein		
3.	rpoA	DNA-directed RNA polymerase (transcriptase) alpha chain		
4.	rpsD	30S ribosomal protein S4		
5.	rpsE	30S ribosomal protein S5		
6.	rpsH	30S ribosomal protein S8		
7.	$\overline{b}frA$	Bacterioferritin		
8.	kdtB	Phosphopantetheine adenylyltransferase PPAT		
9.	glcB	Malate synthase G		
10.	purE	Phosphoribosylaminoimidazole carboxylase cataly ic subunit		
11.	ruvA	Holliday junction DNA helicase		
12.	trpB	Tryptophan synthase beta chain		
13.	mscL	Large-conductance mechanosensitive channel		
Instituto				
Pure and active PPAT from M. tuberculosis		<i>PPAT</i> <i>Iosis</i> of Bioorganic Chemistry (Moscow)		

Integral Pipeline "From Gene to Drug"

Protein crystallography

Potential Targets Found in Genome of *M. tuberculosis*

Target no.	Gene	Target protein
1.	infA	Translation initiation factor IF-1
2.	hupB	Histone-like protein
3.	rpoA	DNA-directed RNA polymerase (transcriptase) alpha chain
4.	rpsD	30S ribosomal protein S4
5.	rpsE	30S ribosomal protein S5
6.	rpsH	30S ribosomal protein S8
7.	bfrA	Bacterioferritin
<mark>8.</mark>	kdtB	Phosphopantetheine adenylyltransferase PPAT
9.	glcB	Malate synthase G
10.	purE	Phosphoribosylaminoimidazole carboxylase catalytic subunit
11.	ruvA	Holliday junction DNA helicase
12.	<i>trpB</i>	Tryptophan synthase beta chain
13.	mscL	Large-conductance mechanosensitive channel

Pure and active PPAT from M. tuberculosis

Institute of Crystallography (Moscow) **PPAT from** *M. tuberculosis*

Institute of Crystallography (Moscow)

Crystal Structure of PPAT from M. tuberculosis

Integral Pipeline "From Gene to Drug"

Strategy of Computer-Aided Drug Design

HIV Protease

INACTIVE FORM - MONOMER

Integral strategy of PPI inhibitors screening

Virtual screening of HIVp inhibitors of dimerization

Top hits from virtual screening of HIVp inhibitors of dimerization

Manual selection from lab collection some compounds looked like Top hits

Integral Pipeline "From Gene to Drug"

Biological testing in vitro

In vitro assay for inhibitors of HIVp dimerization

In vitro assay for HIVp inhibition

The ability of selected compounds to inhibit HIVp was assessed with chromogenic peptide substrate:
H-Lys-Ala-Arg-Val-Tyr-p-nitro-Phe-Glu-Ala-NIe-NH₂

 \checkmark <u>Spectrophotometric assay</u> - ΔA (300 nm) is proportional to HIVp activity

Inhibitor of HIV protease dimerization

BGRS-2008

Thank you for attention!