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Tutorial Outline

� Architecture of High Performance Computers
Slides 3-37
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Slides 38-71

� Message Passing with MPI
Slides 72-103
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Architecture

Architecture of High Performance Computers

� Introduction
� Application Fields
� Architectural Concepts
� Technical Aspects
� The TOP500 List
� Selected Systems
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Why High Performance Computing?

� Situation in science and engineering
� replace complicated physical experiments by 

computer simulations
� evaluate more fine-grained models

� User requirements
� compute masses of individual tasks
� compute complicated single tasks

� Available computational power
� single workstation is not sufficient
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What is it?

� High Performace Computing (HPC), 
Networking and Storage
deals with high and highest performance 

computers, with high speed networks, and 
powerful disk and tape storage systems

� Performance improvement
� compared to personal computers and small 

workstations:
Factor 100...100.000
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What do I Need?

� Small scale high performance computing
� cheapest version: use what you have

workstations with disks and network

� a bit more expensive: buy PCs
� e.g. 16 personal computers with disks and gigabit 

ethernet

� it´s mainly a human resources problem
� network of workstations is time consuming to 

maintain
� software comes for free  (Linux + libraries)
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What do I Need? …

� Large scale high performance computing
� buy 10.000 PCs or a dedicated supercomputer
� buy special hardware for networking and 

storage

� build a special building
� build an electric power station
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How Much do I Have to Pay?

� Small scale   (<64 nodes)
� 1000€/node

� Medium scale    (64-1024 nodes)
� 2000€/node  (multiprocessor, 64-bit)
� 1500€/node for high speed network
� 500€/node for high performance I/O

� Large scale   (>1024 nodes)
� money for building
� money for power plant
� current costs range between 20...400 million Euros
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Application Fields

� Numerical calculations and simulations
� particle physics
� computational fluid dynamics
� car crash simulations
� weather forecast
� financial calculations
� ...

� Non-numerical computations
� chess playing, theorem proving
� commercial database applications



(10/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Application Fields…

� All fields of Bioinformatics
� computational genomics
� computational proteomics
� computational evolutionary biology
� …

� In general
� everything that runs between 1 and 100.000 days
� everything that uses high volumes of data
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Measures

Mega (220≅106) – Giga (230≅109) – Tera (240≅1012)
Peta (250≅1015) – Exa (260≅1018)

� Computational Performance  (Flop/s)
Flop/s = floating point operations per second
� modern single processor: 5 GFlop/s
� Nr. 1 supercomputer: 1.026 TFlop/s  (factor 200.000)

� Network performance  (bit/s)
� personal computer: 100/1000 Mbit/s
� supercomputer networks: 1-10 gigabit/s
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Measures…

� Main memory  (Byte)
� personal computer: 2 GByte
� best supercomputers: dozens of TByte

� Disk space  (Byte)
� single disk 2006: 300 GByte
� best supercomputers: some PByte

� Tape storage  (Byte)
� personal computer: 400 GByte
� best supercomputers: many PByte
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Levels of Parallelism

� Parallel computer architectures
� have units that work in parallel and in a well 

coordinated way to solve a problem
� Units

� specialized components like e.g. processor 
pipelines

� arithmetical/logical units in the processors
� processors / co-processors
� computers
� parallel computers and/or cluster computers
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Architectural Concepts

� Basic classification concept:
How is the main memory organized?
� distributed memory architecture
� shared memory architecture

� Available systems
� dedicated supercomputers
� cluster systems



(15/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Distributed Memory Architecture

� autonomous computers 
connected via network

� processors have access 
to local memory only

� parallel program 
spawns processes over 
a set of processors

� called: multi computer 
system

processor
(multicore)

processor
(multicore)

local
memory

local
memory

interconnection network

recv() send()
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Distributed Memory Architecture…

� Advantages
� good scalability: just buy new nodes

� Concept scales up to 100.000+ nodes

� you can use what you already have
� extend the system when you have money and need 

more power
� Disadvantages

� complicated programming: parallelization of formerly 
sequential programs
(including complicated debugging, performance 
tuning, load blancing, etc.)
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Shared Memory Architecture

� several processors in one 
box (e.g. multiprocessor 
mother-board)

� each processor has 
access to the complete 
address space

� called: multiprocessor 
system, symmetric 
multiprocessing system 
(SMP)

� now: multicore 
processors as standard

processor processor

interconnection network

shared memory
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Shared Memory Architecture

� several processors in one 
box (e.g. multiprocessor 
mother-board)

� each processor has 
access to the complete 
address space

� called: multiprocessor 
system, symmetric 
multiprocessing system 
(SMP)

� now: multicore 
processors as standard

interconnection network

shared memory

processor
core

core core

core
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Shared Memory Architecture…

� Advantages
� much easier programming

� Disadvantages
� limited scalability: up to 64 processors (cores)

reason: interconnection network becomes 
bottleneck
(with multicore still unknown scalability)

� limited extensibility
� very expensive due to high performance 

interconnection network
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Hybrid Architectures

� Use several SMP/multicore systems
� combination of shared memory systems and 

distributed memory system
� The good thing: scalable performance according 

to your financial budget
� The bad thing: programming gets even more 

complicated (hybrid programming)
� The reality: vendors like to sell these systems, 

because they are easier to build
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Supercomputers vs. Clusters

� Supercomputers                     
(Distributed/shared memory)
� constructed by a major vendor (IBM, HP, ...)
� uses some proprietary components (processor, 

network, ...)
� customized (Linux-like) operating systems

� Clusters  (Network of workstations, NOWs)
� assembled by vendor or users
� commodity-off-the-shelf components (COTS)
� Linux operating system
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Supercomputers vs. Clusters…

� Supercomputers
� very expensive to buy
� usually high availability and scalability

� Clusters
� factor 10 cheaper to buy, but:
� very expensive to own
� lower overall availability and scalability
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Scalability

„Scalability“ not a well-defined term, however 
frequently used with high performance computing

What is means: Extendability of the system with 
preservation of certain positive quality characteristics
� e.g. a program scales well when it produces high 

performance even with a high number of parallel 
processes

� e.g. a network scales well when we get double the 
performance for double the money that we invest
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Interconnection Networks

� Most simple case
� with shared memory: bus system
� with distributed memory: ring or star topology

� Complex cases
� many variations, however no full mesh

Problems
� latency, bandwidth
� network load, paket collisions
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Background Storage

� Local disk at compute node
� usually only for temporary data

� File server in the network
� persistent file storage
� file access is performance bottleneck

� Storage Area Network (SAN)
� storage components in separated network 

connected to the cluster

� Tape systems
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Operating Systems

� Cluster operating systems
� variations of UNIX, mostly Linux

� most of the systems

� MS-Windows: now also product for clusters
� almost no system with Windows yet

� Single system image
� user sees only „one“ system
� localization of services is hidden from user
� e.g. MOSIX (not for high performance computing)
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The TOP500-List
� Lists the world´s 500 most powerful systems

www.top500.org
� Updates in June and November
� Ranking based on numerical algorithm

� LINPACK-benchmark
� Rmax is measured performance in GFlop/s
� Rpeak is theoretical maximum in GFlop/s

� In 6 months almost half of the systems fall off the list
� The majority of systems now are clusters



(28/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

TOP500 Ranks 1-10 in June 2008
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Russia in the TOP500 in June 2006

A good start!  ☺
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Russia in the TOP500 in June 2008
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TOP500 Performance Development
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TOP500 Performance Projection
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NEC´s Earth Simulator

� 640 nodes
� 8 vector processors each 
� 5120 processors in total
� 0.15micron copper

� 200MioUSD computer
� 200MioUSD building and 

power station
� application: climat 

research

� 10TByte main memory
� 700TByte disks
� 1.6PByte tapes
� 83.000 copper cables
� 2.800km / 220t of 

cabeling
� 3250m2 foot print
� earth quake protected
� 7MW consumption
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ES Gebäudeaufbau
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IBM´s Blue Gene-Program

� Main application: protein folding
� Dense packing of chips
� Systems:

� Blue Gene/L: 180TFlops/s, by end of 2004
� by end of 2005 doubles to 370TFlops/s

� Blue Gene/P: 1PFlop/s, 2007
� Blue Gene/Q: 3PFlop/s, 2008
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BlueGene Systems
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Summary

� HPC ranges from factor 100 to 200.000 compared to 
single PC

� Application fields: everything that is computationally 
intensive, in particular also bioinformatics

� Main architectural concept: memory organization
� Distributed memory: scales well, is difficult to 

program
� Shared memory: does not scale but is easy to 

program
� Most wide spread concept: cluster architecture
� Nr. 1 supercomputer has now 1026 TFlop/s
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Programming

Parallel Programming Principles

� What is parallelization?
� Paradigms of parallel programming
� Tools for parallelization
� Algorithmic aspects
� Examples
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What is Parallelization?

Task
� Find implicit parallelization in the algorithms and 

make it explicit
� Means: distribute program and data onto the 

resources of the system
� Who? Programmer and/or compiler
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What is Parallelization?...

� Distribution generates new load (overhead )
� overhead is minimal if no distribution at all

� Distribution uses resources optimally
� maximum performance if fully distributed

Objective
use all resources and minimize overhead
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Requirements

� In addition to sequential software
� partitioning of the program into small tasks
� add coordination and communication
� map these parts onto the components of the 

computer

� Problems
� debugging (new types of errors)
� performance analysis (program slow-down)
� load balancing (for maximum performance)
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Parallelization Paradigms

Code-partitioning (also: macro-pipelining)
distribute program code onto the nodes

� different code on each node
� data varies according to flow of computation
� coordinator: first/last process

pre-
processing

post-
processingcomputationdata

p1 p2 p3
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Parallelization Paradigms…

� Advantage of code-partitioning
� sometimes easy to design
� sometimes appropriate algorithms (e.g. FFT)

� Disadvantage of code-partitioning
� multiple source code files
� difficult to adapt to target machine
� complex communication schemes
� complicated debugging
� complicated load balancing
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Parallelization Paradigms…

Data-partitioning
� distribute data over the nodes

� identical code on each node
� data varies from node to node
� selected process coordinates

p1

p2

p3

p4
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Parallelization Paradigms…

� Advantage of data-partitioning
� easy to program: only one source code
� easy to adapt to target machine
� often regular data structures
� relatively easy debugging

� Disadvantage of data-partitioning
� sometimes not appropriate for the algorithm

� Data-partitioning is de facto standard
� called SPMD (single program, multiple data)
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Parallelization Paradigms…

Mixed code- and data-partitioning
� this is our final goal

� has advantages of both approaches
� needs multiprocessing on each node

pre-
processing

post-
processingdata computation2

computation3

computation1

p3

p1

p2
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Tools for Parallelization

� Automatically parallelizing compilers
� Manually parallelizing compilers
� Parallel languages and language extensions
� Parallel extensions for existing sequential 

languages
� Parallel programming libraries for existing 

sequential languages
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Automatically Parallelizing Compilers

� Parallelisation at loop level (Fortran)
� compiler analyses data dependencies
� detects loop indices that can be computed in 

parallel and distributes them
� compiler pragmas control compiler
� usually bad performance
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Manually Parallelizing Compilers

� Important new approach: OpenMP
� Parallelization for systems with shared 

memory
� Compilation controlled by special comments 

introduced by the programmer
� Runtime library necessary
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Parallel Languages and Language 
Extensions

� Approach: High Performance Fortran (HPF)
� Designed 1990+ by a consortium
� No longer of importance for high 

performance computing
� Problem: quality of parallelization by the 

compiler
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Parallel Programming Libraries

Standard with high performance computing
� Concept

� Spawn independent processes
� Integrate cooperation via message passing

� Examples
� Parallel Virtual Machine (PVM)
� Message Passing Interface (MPI)
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Software/Hardware-Relation

� All programming concepts are applicable on 
all architectural types of high performance 
computers

� In reality for reasons of effiency
� libraries for message passing with distributed 

memory architectures
� threads and automatic parallelization with 

shared memory architectures
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Algorithmical Aspects

Divided world of the programmers
� numerical algorithms

� Grand Challenge Algorithms:
weather forecast, protein design, crash simulation…

� non-numerical algorithms
� search algorithms: theorem prover, game programs 

etc.
� database applications
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Numerical Algorithms

� Computational fluid dynamics (CFD), 
numerical computations, optimizations, 
simulations etc.
� iterative algorithms
� complete on a global condition
� regular datastructures (vectors, fields, …)
� regular communication structure
� static process structure
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Non-Numerical Algorithms

� Database applications, artificial intelligence
� search tree algorithms
� irregular communication structures
� irregular data structures (dynamic, garbage 

collection)
� dynamic process/thread structure
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A First Summary

� Paradigms of parallelization
� data partitioning, code partitioning

� Tools for parallel programming
� compilers and libraries
� most important: natural intelligence

� Divided world
� numerical / non-numerical algorithms
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Parallelization Examples

Three examples
� numerical application

� discussion of partitioning

� computational fluid dynamics (CFD)
� discussion of objects to be distributed

� tree search algorithm
� general discussion

� all examples manually parallelized
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Example 1: Numerical Program

� Three functions f(), g() and h()
� Apply functions to a set of values and 

compute result h(g(f(x)))

� We consider two cases:
� code partitioning / data partitioning
� both for distributed memory systems
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Example 1: Numerical Program (2)

Code partitioning
� distribute three functions onto three nodes
� works in so-called macro pipeline mode
� use an input set of values
� only three processors can be used efficiently

f(x) g(x´) h(x´´)
input
data

prozess 1 prozess 2 prozess 3

processor 1 processor 2 processor 3
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Example 1: Numerical Program (3)

Data partitioning
� replicate functions on nodes
� distribute input data over nodes

h(g(f(x))) h(g(f(x))) h(g(f(x)))

input data / 3

process 1 process 2 process 3
processor 1 processor 2 processor 3

input data / 3 input data / 3
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Example 1: Numerical Program (4)

Code partitioning
� basic implementation

� store values in vector
� three processes, one on each processor
� each process computes one function of f, g, h
� process i computes intermediate results and sends 

vector to process process i+1

� problem
� this is not a parallel program!
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Example 1: Numerical Program (5)

� improving the basic implementation
� process i sends computed values immediately to 

process i+1

� advantage
� good parallel implementation

� disadvantage
� bad communication/computation ratio: frequent 

sending of values
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Example 1: Numerical Program (6)

� second improvement
� increase granularity
� send values in blocks of e.g. 1000 values

� advantage
� good parallel implementation
� better communication/computation ratio

� disadvantage
� filling and emptying of pipeline take some time
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Example 1: Numerical Program (7)

Data partitioning with distributed memory
� basic implementation

� distribute values over nodes
� three processes on three nodes compute h(g(f(x)))
� send results to process 0

� advantage
� good parallel implementation
� good communication/computation ratio

� disadvantage
� distribution of data must be programmed
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Example 2: CFD

� Simulation of a wind tunnel
� Iterative computation with time step t

� Microscopic approach: compute particles
� Macroscopic approach: compute distribution of pressure, 

temperature etc.

P 1 P 2

P 3 P 4
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Example 2: CFD (2)

We consider only the microscopic approach
� Also called molecular dynamics

First option: distribute particles
� each process computes one part of all particles

� disadvantage
� difficult to find neighbouring particles for collisions

� advantage
� equal distribution of particles onto processors usual 

results in good load balance
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Example 2: CFD (3)

Second option: distribute volume segments
� each process computes ist own segment of the 

complete volume

� disadvantage
� varying number of particles leads to bad load 

imbalance

� advantage
� neighbouring particles can be easily found
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Example 3: Tree Search

� Each position has several possible continuations
� Problems

� level of solution unknown
� load balance between processes
� detection of program completion

solution
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Example 3: Tree Search (2)

� Algorithms
� process i computes tree until level j and puts 

descriptions into a waiting queue
� idle processes contact process i, receive an element 

from the queue via email, and compute results

� Good parallel implementation
� load balance no problem, but must be programmed
� completion detection: send completion-message 

regularly to all processes; they check for completion



(70/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Conclusion from the Examples

� There are always different alternatives to 
parallelize code

� The chosen variant influences the maximal 
achievable performance

� You cannot derive the parallel program´s 
efficiency from the sequential program

� Usually data partitioning is easier to be 
programmed

� Tree search algorithms are often trivial to be 
parallelized



(71/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Summary

� Program parallelization is a complex task
� We see code and data partitioning
� Data partitioning ist often easy and efficient
� Tools: programming libraries and own experience
� Significant differences between numerical and non-

numerical algorithms
� Efficiency of parallelization can usually not be 

predicted
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Message Passing
Message Passing with MPI

� The Problem
� The Message Passing Interface (MPI)
� Goals and Content of the Specification
� Point-to-Point Communication
� Derived Datatypes
� Collective Communication
� Groups and Contexts
� Evaluation
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The Problem

Program code of the processes can be 
identical or may be different

code

data

code

data

code

data
program

compute node 1 compute node 2

process 1 process 2 process 3

messages
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The Problem…

� Compile for different architectures
� Load code onto different nodes
� Start processes on the nodes
� Bring processes in contact with each other
� Information exchange between processes
� Optimization of communication
� Relation of processes with respect to 

communication
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Load and Start Code

� Similar to creation of threads
spawn(<binary_name>,<node_list>,...);

� If we do have only one program code
if (myid()==0)
then /* I´m the first */
spawn(...);
send(init_data);
else /* I was spawned */
receive(init_data);
fi

Not necessarily only one process per processor
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Information Exchange

� Sending of messages
send(<to_proc_id>,<data>);
broadcast(<data>);

� Receiving of messages
receive(<from_proc_id>,<data>);
testreceive(<from_proc_id>);

What we do: integration of communication calls into 
the program source code

Big effort – but also big performance
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Communication Schemes

P1 P2

P1 P2

P1 P4

P3

P4

P2

P3

broadcast / multicast

direct communication

indirect communication
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Optimization of Communication 
Efficiency

Try to do sending and receiving concurrently
Can only be done efficiently with a combination of 

hardware and software

compute
receive

compute
send

P1

compute send receive computeP1
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Existing Approaches

� P4, Parmacs, Chameleon, NX, ...
Historical message passing libraries

� Parallel Virtual Machine (PVM)
A library available for almost all computer 
architectures
Was for a long time the de facto standard

� Message Passing Interface (MPI)
Specification of an API for message passing
De facto standard for all high performance 
computers and cluster architectures



(80/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Message Passing Interface (MPI)

� Driven by the MPI-Forum
(companies, universities, ...)

� Started in 1992
� MPI Standard 1995  (communication only)
� MPI-2 Standard 1997  (the rest)
� Advantages of this standard:

� portability
� ease of use

Before we had 10+ different competing approaches
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Goals of MPI

� Design of an API (application programming 
interface)

� Support for efficient communication methods
� Support for heterogeneous environments
� Supported languages: Fortran77 and C/C++

(now also Java and script languages)
� Specification close to already existing approaches
� Language independent semantics
� Provide for a thread-safe implementation
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What is in MPI?

� Point-to-point communication
� Collective operations
� Process groups
� Communication contexts
� Process topologies
� Profiling interface
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What is not in MPI?

� Shared memory communication
� Support from the operating system

e.g. interrupt-driven communication
� Process management

e.g. start of application
� Parallel input/output (I/O)

MPI essentially only process communication
MPI-2 covers further important aspects
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MPI Specification Method

� Definition of calls are language independent
� Arguments are annotated IN, OUT, INOUT
E.g. MPI_WAIT(request,status)

INOUT request
OUT   status

C: int MPI_Wait(MPI_Request *request,          
MPI_Status *status)

F77: MPI_WAIT(REQUEST,STATUS,IERROR)
INTEGER REQUEST,

STATUS(MPI_STATUS_SIZE), IERROR
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MPI Definitions

MPI very careful with language aspects
Important terms are well defined
� Nonblocking : a call returns before the operation completes 

and before local resources may be re-used
� Locally blocking : on return local resources may be re-used

� depends only on the local process

� Globally blocking : on return the communication has 
completed
� depends on other processes

� Collective : all processes in a group must execute the call
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Point-to-Point Communication

Send operation
MPI_SEND(buf,count,datatype,dest,tag,comm)

IN buf       address of send buffer
IN count     #elements in buffer
IN datatype  data type of elements
IN dest      rank of target process
IN tag       message label
IN comm      communicator (group, context)

Datatypes: int, long int, float, char, ...
Messages consist of enveloppe and contents
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Point-to-Point Communication… (2)

Receive operation
MPI_RECV(buf,count,datatype,source,tag,comm,

status)
OUT buf      address of receive buffer
IN count     #elements to receive
IN datatype  data type of elements
IN source    rank of sending process
IN tag       message label
IN comm      communicator (group, context)
OUT status   result of operation
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Point-to-Point Communication… (3)

Receive operation…

� controlled by enveloppe
MPI_ANY_SOURCE, MPI_ANY_TAG (wildcard)

� enquiry of details
MPI_GET_SOURCE(), MPI_GET_TAG()
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Point-to-Point Communication… (4)

� Communication semantics
� preservation of sending order

� Data conversion
� Automatically in heterogeneous networks

� Variants
� normal: locally blocking
� ready communication: sending allowed only after 

receive operation was posted (allows a more efficient 
implementation)

� synchronous communication: globally blocking
completes when receiver starts receiving
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Point-to-Point Communication… (5)

� Non-blocking communication
� higher efficiency because of overlapping 

computation and communication
� Important concepts

� blocking / non-blocking
(when does the call return?)

� synchronous / asynchronous
(when is the operation completed?)

� each call gets a unique reference
check for call completion with this reference



(91/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Point-to-Point Communication… (6)

Non-blocking
MPI_ISEND(...)                immediate send
MPI_IRECV(...)                immediate receive
MPI_TEST(request,flag,status) nonblocking
MPI_WAIT(request,status)      blocking
MPI_CANCEL(request,status)

Blocking
MPI_SEND(...)
MPI_RECV(...)
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MPI „Hello World“
#include “mpi.h”
#include <stdio.h>

int main (int argc, char *argv[])
{
int rank, size;
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );
printf(“Hello World from process %d of %d\n”,

rank, size );
MPI_Finalize();
return 0;

}
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Derived Data Types

� Goal
� messages with mixed data types
� messages with non-contiguous data areas

� Packaging of messages needs CPU resources
� Efficiency depends on hardware

(in particular Direct Memory Access, DMA)
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Derived Data Types…

Example: two matrices with complex numbers
Task: send (and receive) only the two diagonals

MPI_TYPE_VECTOR(3 blocks, 1 element/block,
4 blockstride, MPI_COMPLEX, diag)

MPI_TYPE_CREATE_HVECTOR(2 blocks, 1 element/block, 
9*sizeof(MPI_COMPLEX),diag,doublediag)

MPI_TYPE_COMMIT(doublediag)
MPI_SEND(begin,1,doublediag,me,other,comm)

a b c d e f g h i 1 2 3 4 5 6 7 8 9

(begin)
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Collective Communication

Collective communications must always be performed 
by all members of the respective group

� Broadcast from one to all
� Barrier synchronization
� Collect and distribute data
� Global computation of functions

Possible support by specialized hardware
Space for optimizations
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Collective Communication…

Collective calls for data movement
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Collective Communication…

Collective calls for data movement
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Collective Computation

� Frequent situation: processes have to apply the 
same function  to the data, e.g. to sum them up

� Use MPI-function MPI_REDUCE(...,op,...)
� each process contributes with its local data
� after completion each process has the global result
max, min, sum, product, AND, OR, XOR

� Any evaluation order must be correct
� Can be supported by special hardware in parallel 

computers
� Own functions are possible (be careful)
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Groups, Contexts, Communicators

� New concept in MPI  (not available in PVM)
� Problem: 

� third party implementors provide libraries with 
message passing

� message tags and ranks can conflict with those of the 
application program

� Solution
� MPI groups integrate processes that logically belong 

together
� MPI contexts differentiate between program parts
� MPI communicator: combines group and context
� default-communicator: MPI_COMM_WORLD
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Review of MPI

� API only for message exchange 
(communication)

� A big set of function calls
� Process management is missing
� No dynamic process management

� no programs with a varying number of 
processes
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Outlook to MPI-2

� MPI-2 is an extension, not a new version
� Includes also clarifications for MPI
� Important enhancement: process management

(many different solutions before MPI-2)
� Important enhancement: parallel input/output

(idea: I/O equivalent to message sending and 
receiving)

� Again: an even bigger set of new function calls
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MPI-Implementations

� MPICH (Argonne National Laboratory)
� current version: MPICH2 v1.0.7
� http://www-unix.mcs.anl.gov/mpi/mpich/
� available for parallel computers and PCs

� Alternatives
� LAM/MPI (http://www.lam-mpi.org/)

was popular before, now replaced by

� Open-MPI (http://www.open-mpi.org/)
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Summary

� Important problems with message passing:
communication schemes, efficiency, process 
management

� MPI specifies an API for message passing
� Point-to-point communication with many different 

alternatives:
synchronous / asynchronous, blocking / non-
blocking

� Derived data types ease communication
� MPI groups and contexts support separation of 

regions of influence in different parts of a program
� MPI-2 extends MPI by important issues
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Advanced Issues
Advanced issues with message passing

� Introduction, Concepts, Definitions
� Simple I/O
� Non-Contiguous Accesses
� Collective Calls
� Nonblocking I/O
� Shared File Pointers
� File Formats
� Performance Aspects
� Implementation
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What is MPI-2 I/O?

� Extension to the MPI-Standard: parallel 
input/output (I/O)

� Defined in the MPI-2-Standard document
� Semantics analogous to message passing

� e.g. collective, nonblocking also for I/O
� I/O equivalent to sending and receiving
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Why Use Parallel I/O in MPI?

� Higher performance
� e.g. by using collective calls
� e.g. by making asynchronous calls

� Easier data access
� e.g. derived data types with irregular data
� as a consequence also better portability in 

heterogeneous environments
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MPI-I/O Concepts

� File pointer
� individual / shared file pointer

� Non-contiguous access
� manage data at different locations with one call

� Collective call
� File view

� process oriented view to the data in the file
� Hints

� pass information on to the implementation layer
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Some Definitions

� file
� a collection of typed data
� random or sequential access
� collective opening by a group of processes

� displacement
� an absolute byte position in the file where the 

individual views of the processes start

� etype
� basic unit in file; used for positioning



(109/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Some Definitions…

� filetype
� template for a file
� consists of etypes and holes of equal size

etype

filetype

displacement

...
construction of a file

data

hole
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Some Definitions…

� view (of a process)
� defined by displacement, etype and filetype

etype
process 0 filetype

displacement

...
file structure

process 1 filetype
process 2 filetype
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Some Definitions…

� offset
� position in file in relation to the current view

specified in numer of etypes
� file size

� total number of bytes in a file
� file pointer

� position in file managed by MPI
� individual file pointer: each process has own pointer
� shared file pointer: all processes have one single 

pointer
� file handle

� reference to the file (as with Unix)
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Simple I/O: Multiple Processes 
read/write a File

� processes open collectively(!) a file ...
MPI_FILE_OPEN

� ... each process positions with its own pointer ...
MPI_FILE_SEEK

� ... and reads from file / writes to file ...
MPI_FILE_READ
MPI_FILE_WRITE

� ... and closes the file
MPI_FILE_CLOSE
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Simple I/O Function Prototypes

int MPI_File_open (MPI_Comm comm, char *filename, 
int amode, MPI_Info info, MPI_File *fh)

int MPI_File_seek (MPI_File fh, MPI_Offset,      
int whence)

int MPI_File_read (MPI_File fh, void *buf, int 
count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write (MPI_File fh, void *buf, int 
count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_close (MPI_File *fh)
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File Access: Positioning

� Three alternatives
� Explicit offsets
� Individual file pointers
� Shared file pointers

� Mixed use in one program
� Syntax

� explicit offsets: MPI..._AT
� shared: MPI..._SHARED, MPI..._ORDERED
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Non-Contiguous Access and 
Collective Calls

� Until here I/O could also be managed with 
regular Unix-I/O: one file, contiguous data

� However: parallel programs access files 
independently at non-contiguous positions 
from different processes

� MPI-2 I/O offers functionality to access non-
contiguous parts in files from different 
processes with one single call
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Non-Contiguous Access: File View

� By using „views“ each process sees only its 
own part of the file

� view defined by
� displacement, etype, filetype

etype and filetype are standard data types or 
derived data types

� Specify view with
MPI_FILE_SET_VIEW

� holes need to be defined too
MPI_TYPE_CREATE_RESIZED
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Non-Contiguous Access: Example
/* 2 MPI_INT contiguous as derived data type /*
MPI_Type_contiguous(2,MPI_INT,&contig);

/* append 4 holes; makes size 6 */
lower_boundary=0;
extent=6*sizeof(int);
MPI_Type_create_resized(contig,lower_boundary,extent, 

&filetype);

/* publish the new data type ...*/
MPI_Type_commit(&filetyp);

/* ... and set the file view */
MPI_File_set_view(filehandle,displacement,etype,filetype, 

“native“,MPI_INFO_NULL);
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Non-Contiguous Access: Example

etype = MPI_INT
filetype = 2*MPI_INT resized to size 6

displacement

...
file

offset 0
offset 1 offset 2
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Collective Calls

� For further optimization all processes can 
concurrently access the file

� Specification of a view just like before but now 
additional functions
� allows the MPI-implementation to optimize accesses 

from multiple processes
� Even if each process reads only small non-contiguous 

sections of the file, the MPI-implementation can 
possibly compose a single big file access from them

� MPI_FILE_READ_ALL, MPI_FILE_WRITE_ALL
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Nonblocking I/O

� Use it to overlap I/O with communication 
and/or computation

� All non-collective(!) read and write calls have 
corresponding non-blocking calls
� test for completion with standard MPI-test calls

� Naming convention: MPI_FILE_I...
e.g. MPI_FILE_IREAD
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Shared File Pointer

� Until now only individual pointers and offsets
� Also supported: shared pointers

� used by all accessing processes
� every access manipulates pointer position
� next accessing process sees new position

� Functions
MPI_FILE_SEEK_SHARED
MPI_FILE_READ_SHARED
MPI_FILE_WRITE_SHARED
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Shared File Pointer…

� With collective calls we can have a 
serialization according to the process rank
MPI_FILE_READ_ORDERED
MPI_FILE_READ_ORDERED_BEGIN

� Typical application
� shared protocol files (log files)
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Hints

� hints give the user the chance to pass 
information on to the MPI-implementation

� Examples for hints are
� number of disks to use to stripe the file 

(striping)
� width of each stripe

� hints are optional
� also the implementation may ignore hints
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File Formats

� Files are a sequence of bytes
physical storage is implementation dependent

� MPI defines three data representations for different 
degrees of portability
� „native“: no conversion (= memory representation)

quick and non-portabel
� „internal“: portabel between platforms with identical 

MPI-implementation
� „external32“: 32-bit big endian; portabel between 

each MPI-implementation on every architecture
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Performance Aspects

� Selection of optimal I/O-method determines 
achievable I/O bandwidth
� contiguous / non-contiguous
� collective / non-collective

� Example
� file with 3x3-matrix of a complex data type
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Performance Aspects…

processesp1 p2 p3

file
data independent contiguous

request (level 0)

collective contiguous
request (level 1)

independent non-contiguous
request (level 2)

collective non-contiguous
request (level 3)

higher level for
better performance
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Implementation ROMIO

� ROMIO ist the standard open-source 
implementation of MPI-2 I/O
� part of MPICH but can be used separately with 

other MPI-implementations

� ROMIO supports several I/O hardware 
architectures and also file systems

� ROMIO supports all characteristics of MPI-2 
I/O
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Summary

� Parallel I/O is defined just like communication
� Also uses derived data types
� Files are a sequence of elementary data type 

elements
� Each process has ist own file view
� We position explicitly, with individual file pointers, or 

shared file pointers
� Non-contiguous accesses improve performance
� Collective calls improve performance
� ROMIO is the standard implementation
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Links

� MPI: www-unix.mcs.anl.gov/mpi
� MPI-Forum: www.mpi-forum.org
� MPICH: www-unix.mcs.anl.gov/mpi/mpich
� TOP500: www.top500.org


