
Introduction to
High Performance Computing

BGRS International Summer School

Prof. Dr. Thomas Ludwig
Universität Heidelberg, Germany

Email: t.ludwig@computer.org
Web: pvs.informatik.uni-heidelberg.de

(2/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Tutorial Outline

Architecture of High Performance Computers
Slides 3-37

Parallel Programming Principles
Slides 38-71

Message Passing with MPI
Slides 72-103

Advanced Issues with Message Passing
Slides 104-128

(3/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Architecture

Architecture of High Performance Computers

Introduction
Application Fields
Architectural Concepts
Technical Aspects
The TOP500 List
Selected Systems

(4/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Why High Performance Computing?

Situation in science and engineering
replace complicated physical experiments by
computer simulations
evaluate more fine-grained models

User requirements
compute masses of individual tasks
compute complicated single tasks

Available computational power
single workstation is not sufficient

(5/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

What is it?

High Performace Computing (HPC),
Networking and Storage
deals with high and highest performance

computers, with high speed networks, and
powerful disk and tape storage systems

Performance improvement
compared to personal computers and small
workstations:
Factor 100...100.000

(6/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

What do I Need?

Small scale high performance computing
cheapest version: use what you have
workstations with disks and network

a bit more expensive: buy PCs
e.g. 16 personal computers with disks and gigabit
ethernet

it´s mainly a human resources problem
network of workstations is time consuming to
maintain
software comes for free (Linux + libraries)

(7/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

What do I Need? …

Large scale high performance computing
buy 10.000 PCs or a dedicated supercomputer
buy special hardware for networking and
storage

build a special building
build an electric power station

(8/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

How Much do I Have to Pay?

Small scale (<64 nodes)
1000€/node

Medium scale (64-1024 nodes)
2000€/node (multiprocessor, 64-bit)
1500€/node for high speed network
500€/node for high performance I/O

Large scale (>1024 nodes)
money for building
money for power plant
current costs range between 20...400 million Euros

(9/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Application Fields

Numerical calculations and simulations
particle physics
computational fluid dynamics
car crash simulations
weather forecast
financial calculations
...

Non-numerical computations
chess playing, theorem proving
commercial database applications

(10/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Application Fields…

All fields of Bioinformatics
computational genomics
computational proteomics
computational evolutionary biology
…

In general
everything that runs between 1 and 100.000 days
everything that uses high volumes of data

(11/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Measures

Mega (220≅106) – Giga (230≅109) – Tera (240≅1012)
Peta (250≅1015) – Exa (260≅1018)

Computational Performance (Flop/s)
Flop/s = floating point operations per second

modern single processor: 5 GFlop/s
Nr. 1 supercomputer: 1.026 TFlop/s (factor 200.000)

Network performance (bit/s)
personal computer: 100/1000 Mbit/s
supercomputer networks: 1-10 gigabit/s

(12/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Measures…

Main memory (Byte)
personal computer: 2 GByte
best supercomputers: dozens of TByte

Disk space (Byte)
single disk 2006: 300 GByte
best supercomputers: some PByte

Tape storage (Byte)
personal computer: 400 GByte
best supercomputers: many PByte

(13/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Levels of Parallelism

Parallel computer architectures
have units that work in parallel and in a well
coordinated way to solve a problem

Units
specialized components like e.g. processor
pipelines
arithmetical/logical units in the processors
processors / co-processors
computers
parallel computers and/or cluster computers

(14/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Architectural Concepts

Basic classification concept:
How is the main memory organized?

distributed memory architecture
shared memory architecture

Available systems
dedicated supercomputers
cluster systems

(15/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Distributed Memory Architecture

autonomous computers
connected via network
processors have access
to local memory only
parallel program
spawns processes over
a set of processors
called: multi computer
system

processor
(multicore)

processor
(multicore)

local
memory

local
memory

interconnection network

recv() send()

(16/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Distributed Memory Architecture…

Advantages
good scalability: just buy new nodes

Concept scales up to 100.000+ nodes

you can use what you already have
extend the system when you have money and need
more power

Disadvantages
complicated programming: parallelization of formerly
sequential programs
(including complicated debugging, performance
tuning, load blancing, etc.)

(17/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Shared Memory Architecture

several processors in one
box (e.g. multiprocessor
mother-board)
each processor has
access to the complete
address space
called: multiprocessor
system, symmetric
multiprocessing system
(SMP)
now: multicore
processors as standard

processor processor

interconnection network

shared memory

(18/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Shared Memory Architecture

several processors in one
box (e.g. multiprocessor
mother-board)
each processor has
access to the complete
address space
called: multiprocessor
system, symmetric
multiprocessing system
(SMP)
now: multicore
processors as standard

interconnection network

shared memory

processor
core

core core

core

(19/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Shared Memory Architecture…

Advantages
much easier programming

Disadvantages
limited scalability: up to 64 processors (cores)
reason: interconnection network becomes
bottleneck
(with multicore still unknown scalability)
limited extensibility
very expensive due to high performance
interconnection network

(20/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Hybrid Architectures

Use several SMP/multicore systems
combination of shared memory systems and
distributed memory system

The good thing: scalable performance according
to your financial budget
The bad thing: programming gets even more
complicated (hybrid programming)
The reality: vendors like to sell these systems,
because they are easier to build

(21/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Supercomputers vs. Clusters

Supercomputers
(Distributed/shared memory)

constructed by a major vendor (IBM, HP, ...)
uses some proprietary components (processor,
network, ...)
customized (Linux-like) operating systems

Clusters (Network of workstations, NOWs)
assembled by vendor or users
commodity-off-the-shelf components (COTS)
Linux operating system

(22/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Supercomputers vs. Clusters…

Supercomputers
very expensive to buy
usually high availability and scalability

Clusters
factor 10 cheaper to buy, but:
very expensive to own
lower overall availability and scalability

(23/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Scalability

„Scalability“ not a well-defined term, however
frequently used with high performance computing

What is means: Extendability of the system with
preservation of certain positive quality characteristics

e.g. a program scales well when it produces high
performance even with a high number of parallel
processes
e.g. a network scales well when we get double the
performance for double the money that we invest

(24/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Interconnection Networks

Most simple case
with shared memory: bus system
with distributed memory: ring or star topology

Complex cases
many variations, however no full mesh

Problems
latency, bandwidth
network load, paket collisions

(25/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Background Storage

Local disk at compute node
usually only for temporary data

File server in the network
persistent file storage
file access is performance bottleneck

Storage Area Network (SAN)
storage components in separated network
connected to the cluster

Tape systems

(26/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Operating Systems

Cluster operating systems
variations of UNIX, mostly Linux

most of the systems

MS-Windows: now also product for clusters
almost no system with Windows yet

Single system image
user sees only „one“ system
localization of services is hidden from user
e.g. MOSIX (not for high performance computing)

(27/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

The TOP500-List
Lists the world´s 500 most powerful systems
www.top500.org

Updates in June and November
Ranking based on numerical algorithm

LINPACK-benchmark
Rmax is measured performance in GFlop/s
Rpeak is theoretical maximum in GFlop/s

In 6 months almost half of the systems fall off the list
The majority of systems now are clusters

(28/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

TOP500 Ranks 1-10 in June 2008

(29/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Russia in the TOP500 in June 2006

A good start! ☺

(30/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Russia in the TOP500 in June 2008

(31/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

TOP500 Performance Development

(32/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

TOP500 Performance Projection

(33/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

NEC´s Earth Simulator

640 nodes
8 vector processors each
5120 processors in total
0.15micron copper

200MioUSD computer
200MioUSD building and
power station
application: climat
research

10TByte main memory
700TByte disks
1.6PByte tapes
83.000 copper cables
2.800km / 220t of
cabeling
3250m2 foot print
earth quake protected
7MW consumption

(34/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

ES Gebäudeaufbau

(35/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

IBM´s Blue Gene-Program

Main application: protein folding
Dense packing of chips
Systems:

Blue Gene/L: 180TFlops/s, by end of 2004
by end of 2005 doubles to 370TFlops/s

Blue Gene/P: 1PFlop/s, 2007
Blue Gene/Q: 3PFlop/s, 2008

(36/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

BlueGene Systems

(37/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Summary

HPC ranges from factor 100 to 200.000 compared to
single PC
Application fields: everything that is computationally
intensive, in particular also bioinformatics
Main architectural concept: memory organization
Distributed memory: scales well, is difficult to
program
Shared memory: does not scale but is easy to
program
Most wide spread concept: cluster architecture
Nr. 1 supercomputer has now 1026 TFlop/s

(38/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Programming

Parallel Programming Principles

What is parallelization?
Paradigms of parallel programming
Tools for parallelization
Algorithmic aspects
Examples

(39/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

What is Parallelization?

Task
Find implicit parallelization in the algorithms and
make it explicit
Means: distribute program and data onto the
resources of the system
Who? Programmer and/or compiler

(40/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

What is Parallelization?...

Distribution generates new load (overhead)
overhead is minimal if no distribution at all

Distribution uses resources optimally
maximum performance if fully distributed

Objective
use all resources and minimize overhead

(41/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Requirements

In addition to sequential software
partitioning of the program into small tasks
add coordination and communication
map these parts onto the components of the
computer

Problems
debugging (new types of errors)
performance analysis (program slow-down)
load balancing (for maximum performance)

(42/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Parallelization Paradigms

Code-partitioning (also: macro-pipelining)
distribute program code onto the nodes

different code on each node
data varies according to flow of computation
coordinator: first/last process

pre-
processing

post-
processingcomputationdata

p1 p2 p3

(43/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Parallelization Paradigms…

Advantage of code-partitioning
sometimes easy to design
sometimes appropriate algorithms (e.g. FFT)

Disadvantage of code-partitioning
multiple source code files
difficult to adapt to target machine
complex communication schemes
complicated debugging
complicated load balancing

(44/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Parallelization Paradigms…

Data-partitioning
distribute data over the nodes

identical code on each node
data varies from node to node
selected process coordinates

p1

p2

p3

p4

(45/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Parallelization Paradigms…

Advantage of data-partitioning
easy to program: only one source code
easy to adapt to target machine
often regular data structures
relatively easy debugging

Disadvantage of data-partitioning
sometimes not appropriate for the algorithm

Data-partitioning is de facto standard
called SPMD (single program, multiple data)

(46/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Parallelization Paradigms…

Mixed code- and data-partitioning
this is our final goal

has advantages of both approaches
needs multiprocessing on each node

pre-
processing

post-
processingdata computation2

computation3

computation1

p3

p1

p2

(47/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Tools for Parallelization

Automatically parallelizing compilers
Manually parallelizing compilers
Parallel languages and language extensions
Parallel extensions for existing sequential
languages
Parallel programming libraries for existing
sequential languages

(48/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Automatically Parallelizing Compilers

Parallelisation at loop level (Fortran)
compiler analyses data dependencies
detects loop indices that can be computed in
parallel and distributes them
compiler pragmas control compiler
usually bad performance

(49/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Manually Parallelizing Compilers

Important new approach: OpenMP
Parallelization for systems with shared
memory
Compilation controlled by special comments
introduced by the programmer
Runtime library necessary

(50/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Parallel Languages and Language
Extensions

Approach: High Performance Fortran (HPF)
Designed 1990+ by a consortium
No longer of importance for high
performance computing
Problem: quality of parallelization by the
compiler

(51/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Parallel Programming Libraries

Standard with high performance computing
Concept

Spawn independent processes
Integrate cooperation via message passing

Examples
Parallel Virtual Machine (PVM)
Message Passing Interface (MPI)

(52/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Software/Hardware-Relation

All programming concepts are applicable on
all architectural types of high performance
computers

In reality for reasons of effiency
libraries for message passing with distributed
memory architectures
threads and automatic parallelization with
shared memory architectures

(53/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Algorithmical Aspects

Divided world of the programmers
numerical algorithms

Grand Challenge Algorithms:
weather forecast, protein design, crash simulation…

non-numerical algorithms
search algorithms: theorem prover, game programs
etc.
database applications

(54/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Numerical Algorithms

Computational fluid dynamics (CFD),
numerical computations, optimizations,
simulations etc.

iterative algorithms
complete on a global condition
regular datastructures (vectors, fields, …)
regular communication structure
static process structure

(55/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Non-Numerical Algorithms

Database applications, artificial intelligence
search tree algorithms
irregular communication structures
irregular data structures (dynamic, garbage
collection)
dynamic process/thread structure

(56/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

A First Summary

Paradigms of parallelization
data partitioning, code partitioning

Tools for parallel programming
compilers and libraries
most important: natural intelligence

Divided world
numerical / non-numerical algorithms

(57/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Parallelization Examples

Three examples
numerical application

discussion of partitioning

computational fluid dynamics (CFD)
discussion of objects to be distributed

tree search algorithm
general discussion

all examples manually parallelized

(58/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 1: Numerical Program

Three functions f(), g() and h()
Apply functions to a set of values and
compute result h(g(f(x)))

We consider two cases:
code partitioning / data partitioning
both for distributed memory systems

(59/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 1: Numerical Program (2)

Code partitioning
distribute three functions onto three nodes
works in so-called macro pipeline mode
use an input set of values
only three processors can be used efficiently

f(x) g(x´) h(x´´)
input
data

prozess 1 prozess 2 prozess 3

processor 1 processor 2 processor 3

(60/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 1: Numerical Program (3)

Data partitioning
replicate functions on nodes
distribute input data over nodes

h(g(f(x))) h(g(f(x))) h(g(f(x)))

input data / 3

process 1 process 2 process 3
processor 1 processor 2 processor 3

input data / 3 input data / 3

(61/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 1: Numerical Program (4)

Code partitioning
basic implementation

store values in vector
three processes, one on each processor
each process computes one function of f, g, h
process i computes intermediate results and sends
vector to process process i+1

problem
this is not a parallel program!

(62/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 1: Numerical Program (5)

improving the basic implementation
process i sends computed values immediately to
process i+1

advantage
good parallel implementation

disadvantage
bad communication/computation ratio: frequent
sending of values

(63/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 1: Numerical Program (6)

second improvement
increase granularity
send values in blocks of e.g. 1000 values

advantage
good parallel implementation
better communication/computation ratio

disadvantage
filling and emptying of pipeline take some time

(64/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 1: Numerical Program (7)

Data partitioning with distributed memory
basic implementation

distribute values over nodes
three processes on three nodes compute h(g(f(x)))
send results to process 0

advantage
good parallel implementation
good communication/computation ratio

disadvantage
distribution of data must be programmed

(65/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 2: CFD

Simulation of a wind tunnel
Iterative computation with time step t

Microscopic approach: compute particles
Macroscopic approach: compute distribution of pressure,
temperature etc.

P 1 P 2

P 3 P 4

(66/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 2: CFD (2)

We consider only the microscopic approach
Also called molecular dynamics

First option: distribute particles
each process computes one part of all particles

disadvantage
difficult to find neighbouring particles for collisions

advantage
equal distribution of particles onto processors usual
results in good load balance

(67/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 2: CFD (3)

Second option: distribute volume segments
each process computes ist own segment of the
complete volume

disadvantage
varying number of particles leads to bad load
imbalance

advantage
neighbouring particles can be easily found

(68/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 3: Tree Search

Each position has several possible continuations
Problems

level of solution unknown
load balance between processes
detection of program completion

solution

(69/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Example 3: Tree Search (2)

Algorithms
process i computes tree until level j and puts
descriptions into a waiting queue
idle processes contact process i, receive an element
from the queue via email, and compute results

Good parallel implementation
load balance no problem, but must be programmed
completion detection: send completion-message
regularly to all processes; they check for completion

(70/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Conclusion from the Examples

There are always different alternatives to
parallelize code
The chosen variant influences the maximal
achievable performance
You cannot derive the parallel program´s
efficiency from the sequential program
Usually data partitioning is easier to be
programmed
Tree search algorithms are often trivial to be
parallelized

(71/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Summary

Program parallelization is a complex task
We see code and data partitioning
Data partitioning ist often easy and efficient
Tools: programming libraries and own experience
Significant differences between numerical and non-
numerical algorithms
Efficiency of parallelization can usually not be
predicted

(72/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Message Passing
Message Passing with MPI

The Problem
The Message Passing Interface (MPI)
Goals and Content of the Specification
Point-to-Point Communication
Derived Datatypes
Collective Communication
Groups and Contexts
Evaluation

(73/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

The Problem

Program code of the processes can be
identical or may be different

code

data

code

data

code

data
program

compute node 1 compute node 2

process 1 process 2 process 3

messages

(74/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

The Problem…

Compile for different architectures
Load code onto different nodes
Start processes on the nodes
Bring processes in contact with each other
Information exchange between processes
Optimization of communication
Relation of processes with respect to
communication

(75/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Load and Start Code

Similar to creation of threads
spawn(<binary_name>,<node_list>,...);

If we do have only one program code
if (myid()==0)
then /* I´m the first */
spawn(...);
send(init_data);
else /* I was spawned */
receive(init_data);
fi

Not necessarily only one process per processor

(76/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Information Exchange

Sending of messages
send(<to_proc_id>,<data>);
broadcast(<data>);

Receiving of messages
receive(<from_proc_id>,<data>);
testreceive(<from_proc_id>);

What we do: integration of communication calls into
the program source code

Big effort – but also big performance

(77/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Communication Schemes

P1 P2

P1 P2

P1 P4

P3

P4

P2

P3

broadcast / multicast

direct communication

indirect communication

(78/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Optimization of Communication
Efficiency

Try to do sending and receiving concurrently
Can only be done efficiently with a combination of

hardware and software

compute
receive

compute
send

P1

compute send receive computeP1

(79/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Existing Approaches

P4, Parmacs, Chameleon, NX, ...
Historical message passing libraries
Parallel Virtual Machine (PVM)
A library available for almost all computer
architectures
Was for a long time the de facto standard
Message Passing Interface (MPI)
Specification of an API for message passing
De facto standard for all high performance
computers and cluster architectures

(80/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Message Passing Interface (MPI)

Driven by the MPI-Forum
(companies, universities, ...)

Started in 1992
MPI Standard 1995 (communication only)
MPI-2 Standard 1997 (the rest)
Advantages of this standard:

portability
ease of use

Before we had 10+ different competing approaches

(81/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Goals of MPI

Design of an API (application programming
interface)
Support for efficient communication methods
Support for heterogeneous environments
Supported languages: Fortran77 and C/C++
(now also Java and script languages)
Specification close to already existing approaches
Language independent semantics
Provide for a thread-safe implementation

(82/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

What is in MPI?

Point-to-point communication
Collective operations
Process groups
Communication contexts
Process topologies
Profiling interface

(83/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

What is not in MPI?

Shared memory communication
Support from the operating system
e.g. interrupt-driven communication

Process management
e.g. start of application

Parallel input/output (I/O)

MPI essentially only process communication
MPI-2 covers further important aspects

(84/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

MPI Specification Method

Definition of calls are language independent
Arguments are annotated IN, OUT, INOUT

E.g. MPI_WAIT(request,status)
INOUT request
OUT status

C: int MPI_Wait(MPI_Request *request,
MPI_Status *status)

F77: MPI_WAIT(REQUEST,STATUS,IERROR)
INTEGER REQUEST,

STATUS(MPI_STATUS_SIZE), IERROR

(85/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

MPI Definitions

MPI very careful with language aspects
Important terms are well defined

Nonblocking : a call returns before the operation completes
and before local resources may be re-used
Locally blocking : on return local resources may be re-used

depends only on the local process

Globally blocking : on return the communication has
completed

depends on other processes

Collective : all processes in a group must execute the call

(86/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Point-to-Point Communication

Send operation
MPI_SEND(buf,count,datatype,dest,tag,comm)

IN buf address of send buffer
IN count #elements in buffer
IN datatype data type of elements
IN dest rank of target process
IN tag message label
IN comm communicator (group, context)

Datatypes: int, long int, float, char, ...
Messages consist of enveloppe and contents

(87/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Point-to-Point Communication… (2)

Receive operation
MPI_RECV(buf,count,datatype,source,tag,comm,

status)
OUT buf address of receive buffer
IN count #elements to receive
IN datatype data type of elements
IN source rank of sending process
IN tag message label
IN comm communicator (group, context)
OUT status result of operation

(88/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Point-to-Point Communication… (3)

Receive operation…

controlled by enveloppe
MPI_ANY_SOURCE, MPI_ANY_TAG (wildcard)
enquiry of details
MPI_GET_SOURCE(), MPI_GET_TAG()

(89/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Point-to-Point Communication… (4)

Communication semantics
preservation of sending order

Data conversion
Automatically in heterogeneous networks

Variants
normal: locally blocking
ready communication: sending allowed only after
receive operation was posted (allows a more efficient
implementation)
synchronous communication: globally blocking
completes when receiver starts receiving

(90/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Point-to-Point Communication… (5)

Non-blocking communication
higher efficiency because of overlapping
computation and communication

Important concepts
blocking / non-blocking
(when does the call return?)
synchronous / asynchronous
(when is the operation completed?)
each call gets a unique reference
check for call completion with this reference

(91/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Point-to-Point Communication… (6)

Non-blocking
MPI_ISEND(...) immediate send
MPI_IRECV(...) immediate receive
MPI_TEST(request,flag,status) nonblocking
MPI_WAIT(request,status) blocking
MPI_CANCEL(request,status)

Blocking
MPI_SEND(...)
MPI_RECV(...)

(92/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

MPI „Hello World“
#include “mpi.h”
#include <stdio.h>

int main (int argc, char *argv[])
{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf(“Hello World from process %d of %d\n”,

rank, size);
MPI_Finalize();
return 0;

}

(93/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Derived Data Types

Goal
messages with mixed data types
messages with non-contiguous data areas

Packaging of messages needs CPU resources
Efficiency depends on hardware
(in particular Direct Memory Access, DMA)

(94/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Derived Data Types…

Example: two matrices with complex numbers
Task: send (and receive) only the two diagonals

MPI_TYPE_VECTOR(3 blocks, 1 element/block,
4 blockstride, MPI_COMPLEX, diag)

MPI_TYPE_CREATE_HVECTOR(2 blocks, 1 element/block,
9*sizeof(MPI_COMPLEX),diag,doublediag)

MPI_TYPE_COMMIT(doublediag)
MPI_SEND(begin,1,doublediag,me,other,comm)

a b c d e f g h i 1 2 3 4 5 6 7 8 9

(begin)

(95/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Collective Communication

Collective communications must always be performed
by all members of the respective group
Broadcast from one to all
Barrier synchronization
Collect and distribute data
Global computation of functions

Possible support by specialized hardware
Space for optimizations

(96/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Collective Communication…

Collective calls for data movement

A0
data

pr
oc

es
se

s A0
A0
A0

data

pr
oc

es
se

s

one-all broadcast

A0
B0
C0

data

pr
oc

es
se

s A0
A0
A0

B0
B0
B0

C0
C0
C0

data

pr
oc

es
se

s

all gather

(97/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Collective Communication…

Collective calls for data movement

A0 A1 A2
data

pr
oc

es
se

s A0
A1
A2

data

pr
oc

es
se

sone-all scatter

A0
B0
C0

A1
B1
C1

A2
B2
C2

data

pr
oc

es
se

s A0
A1
A2

B0
B1
B2

C0
C1
C2

data

pr
oc

es
se

s

all-all gather

one-all gather

(98/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Collective Computation

Frequent situation: processes have to apply the
same function to the data, e.g. to sum them up
Use MPI-function MPI_REDUCE(...,op,...)

each process contributes with its local data
after completion each process has the global result
max, min, sum, product, AND, OR, XOR

Any evaluation order must be correct
Can be supported by special hardware in parallel
computers
Own functions are possible (be careful)

(99/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Groups, Contexts, Communicators

New concept in MPI (not available in PVM)
Problem:

third party implementors provide libraries with
message passing
message tags and ranks can conflict with those of the
application program

Solution
MPI groups integrate processes that logically belong
together
MPI contexts differentiate between program parts
MPI communicator: combines group and context
default-communicator: MPI_COMM_WORLD

(100/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Review of MPI

API only for message exchange
(communication)
A big set of function calls
Process management is missing
No dynamic process management

no programs with a varying number of
processes

(101/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Outlook to MPI-2

MPI-2 is an extension, not a new version
Includes also clarifications for MPI
Important enhancement: process management
(many different solutions before MPI-2)
Important enhancement: parallel input/output
(idea: I/O equivalent to message sending and
receiving)
Again: an even bigger set of new function calls

(102/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

MPI-Implementations

MPICH (Argonne National Laboratory)
current version: MPICH2 v1.0.7
http://www-unix.mcs.anl.gov/mpi/mpich/
available for parallel computers and PCs

Alternatives
LAM/MPI (http://www.lam-mpi.org/)
was popular before, now replaced by

Open-MPI (http://www.open-mpi.org/)

(103/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Summary

Important problems with message passing:
communication schemes, efficiency, process
management
MPI specifies an API for message passing
Point-to-point communication with many different
alternatives:
synchronous / asynchronous, blocking / non-
blocking
Derived data types ease communication
MPI groups and contexts support separation of
regions of influence in different parts of a program
MPI-2 extends MPI by important issues

(104/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Advanced Issues
Advanced issues with message passing

Introduction, Concepts, Definitions
Simple I/O
Non-Contiguous Accesses
Collective Calls
Nonblocking I/O
Shared File Pointers
File Formats
Performance Aspects
Implementation

(105/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

What is MPI-2 I/O?

Extension to the MPI-Standard: parallel
input/output (I/O)
Defined in the MPI-2-Standard document
Semantics analogous to message passing

e.g. collective, nonblocking also for I/O
I/O equivalent to sending and receiving

(106/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Why Use Parallel I/O in MPI?

Higher performance
e.g. by using collective calls
e.g. by making asynchronous calls

Easier data access
e.g. derived data types with irregular data
as a consequence also better portability in
heterogeneous environments

(107/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

MPI-I/O Concepts

File pointer
individual / shared file pointer

Non-contiguous access
manage data at different locations with one call

Collective call
File view

process oriented view to the data in the file
Hints

pass information on to the implementation layer

(108/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Some Definitions

file
a collection of typed data
random or sequential access
collective opening by a group of processes

displacement
an absolute byte position in the file where the
individual views of the processes start

etype
basic unit in file; used for positioning

(109/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Some Definitions…

filetype
template for a file
consists of etypes and holes of equal size

etype

filetype

displacement

...
construction of a file

data

hole

(110/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Some Definitions…

view (of a process)
defined by displacement, etype and filetype

etype
process 0 filetype

displacement

...
file structure

process 1 filetype
process 2 filetype

(111/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Some Definitions…

offset
position in file in relation to the current view
specified in numer of etypes

file size
total number of bytes in a file

file pointer
position in file managed by MPI
individual file pointer: each process has own pointer
shared file pointer: all processes have one single
pointer
file handle

reference to the file (as with Unix)

(112/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Simple I/O: Multiple Processes
read/write a File

processes open collectively(!) a file ...
MPI_FILE_OPEN

... each process positions with its own pointer ...
MPI_FILE_SEEK

... and reads from file / writes to file ...
MPI_FILE_READ
MPI_FILE_WRITE

... and closes the file
MPI_FILE_CLOSE

(113/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Simple I/O Function Prototypes

int MPI_File_open (MPI_Comm comm, char *filename,
int amode, MPI_Info info, MPI_File *fh)

int MPI_File_seek (MPI_File fh, MPI_Offset,
int whence)

int MPI_File_read (MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write (MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_close (MPI_File *fh)

(114/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

File Access: Positioning

Three alternatives
Explicit offsets
Individual file pointers
Shared file pointers

Mixed use in one program
Syntax

explicit offsets: MPI..._AT
shared: MPI..._SHARED, MPI..._ORDERED

(115/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Non-Contiguous Access and
Collective Calls

Until here I/O could also be managed with
regular Unix-I/O: one file, contiguous data
However: parallel programs access files
independently at non-contiguous positions
from different processes
MPI-2 I/O offers functionality to access non-
contiguous parts in files from different
processes with one single call

(116/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Non-Contiguous Access: File View

By using „views“ each process sees only its
own part of the file
view defined by

displacement, etype, filetype
etype and filetype are standard data types or
derived data types

Specify view with
MPI_FILE_SET_VIEW

holes need to be defined too
MPI_TYPE_CREATE_RESIZED

(117/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Non-Contiguous Access: Example
/* 2 MPI_INT contiguous as derived data type /*
MPI_Type_contiguous(2,MPI_INT,&contig);

/* append 4 holes; makes size 6 */
lower_boundary=0;
extent=6*sizeof(int);
MPI_Type_create_resized(contig,lower_boundary,extent,

&filetype);

/* publish the new data type ...*/
MPI_Type_commit(&filetyp);

/* ... and set the file view */
MPI_File_set_view(filehandle,displacement,etype,filetype,

“native“,MPI_INFO_NULL);

(118/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Non-Contiguous Access: Example

etype = MPI_INT
filetype = 2*MPI_INT resized to size 6

displacement

...
file

offset 0
offset 1 offset 2

(119/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Collective Calls

For further optimization all processes can
concurrently access the file
Specification of a view just like before but now
additional functions

allows the MPI-implementation to optimize accesses
from multiple processes

Even if each process reads only small non-contiguous
sections of the file, the MPI-implementation can
possibly compose a single big file access from them
MPI_FILE_READ_ALL, MPI_FILE_WRITE_ALL

(120/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Nonblocking I/O

Use it to overlap I/O with communication
and/or computation
All non-collective(!) read and write calls have
corresponding non-blocking calls

test for completion with standard MPI-test calls
Naming convention: MPI_FILE_I...
e.g. MPI_FILE_IREAD

(121/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Shared File Pointer

Until now only individual pointers and offsets
Also supported: shared pointers

used by all accessing processes
every access manipulates pointer position
next accessing process sees new position

Functions
MPI_FILE_SEEK_SHARED
MPI_FILE_READ_SHARED
MPI_FILE_WRITE_SHARED

(122/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Shared File Pointer…

With collective calls we can have a
serialization according to the process rank
MPI_FILE_READ_ORDERED
MPI_FILE_READ_ORDERED_BEGIN

Typical application
shared protocol files (log files)

(123/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Hints

hints give the user the chance to pass
information on to the MPI-implementation
Examples for hints are

number of disks to use to stripe the file
(striping)
width of each stripe

hints are optional
also the implementation may ignore hints

(124/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

File Formats

Files are a sequence of bytes
physical storage is implementation dependent

MPI defines three data representations for different
degrees of portability

„native“: no conversion (= memory representation)
quick and non-portabel
„internal“: portabel between platforms with identical
MPI-implementation
„external32“: 32-bit big endian; portabel between
each MPI-implementation on every architecture

(125/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Performance Aspects

Selection of optimal I/O-method determines
achievable I/O bandwidth

contiguous / non-contiguous
collective / non-collective

Example
file with 3x3-matrix of a complex data type

(126/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Performance Aspects…

processesp1 p2 p3

file
data independent contiguous

request (level 0)

collective contiguous
request (level 1)

independent non-contiguous
request (level 2)

collective non-contiguous
request (level 3)

higher level for
better performance

(127/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Implementation ROMIO

ROMIO ist the standard open-source
implementation of MPI-2 I/O

part of MPICH but can be used separately with
other MPI-implementations

ROMIO supports several I/O hardware
architectures and also file systems
ROMIO supports all characteristics of MPI-2
I/O

(128/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Summary

Parallel I/O is defined just like communication
Also uses derived data types
Files are a sequence of elementary data type
elements
Each process has ist own file view
We position explicitly, with individual file pointers, or
shared file pointers
Non-contiguous accesses improve performance
Collective calls improve performance
ROMIO is the standard implementation

(129/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Literature
Mark Snir et al.: MPI – The Complete Reference. Volume 1,
The MPI Core. Second Edition. MIT-Press, 1998.
W. Gropp, B. Nitzberg, E. Lusk: MPI – The Complete
Reference Volume 2. MIT-Press, 1998.
William Gropp et al.: Using MPI – Portable Parallel
Programming with the Message-Passing Interface. Second
Edition. MIT-Press, 1999.
W. Gropp, R. Thakur, E. Lusk: Using MPI-2 – Advanced
Features of the Message-Passing Interface. MIT-Press,
1999.
Joseph D. Sloan: High Performance Linux Clusters – with
OSCAR, Rocks, openMosix & MPI, O´Reilly, 2004
William Gropp, Ewing Lusk, Thomas Sterling: Beowulf
Cluster Computing with Linux, MIT Press, 2003

(130/130)© Thomas Ludwig, t.ludwig@computer.org, BGRS 2008, Novosibirsk, Russia

Links

MPI: www-unix.mcs.anl.gov/mpi
MPI-Forum: www.mpi-forum.org
MPICH: www-unix.mcs.anl.gov/mpi/mpich
TOP500: www.top500.org

