# Desgrete Models for Molegular Sumulations Forulation at the

D.Yu. Sherbakov

Limnological Institute SB RAS Irkutsk RUSSIA



# MOTIVATION:

- Making the process of simulation of ecological or evolutionary process better understandable for a biologist
- Obtaining the results of a simulation in a form which would correspond directly to the outcome of an experiment

# Logistic growth with competition and mutations – adaptive dynamics

$$\frac{dN(x,t)}{dt} = r \cdot N(x,t) \cdot \left[ 1 - \int C_{x}(x-\chi)N(\chi,t)dy \middle/ K(x) \right]$$

## Here x – ecological character defined by polygene

$$\boldsymbol{K}(\boldsymbol{x}) = \boldsymbol{K}_0 \exp\left[-\frac{(\boldsymbol{x} - \boldsymbol{x}_0)^2}{2\sigma_{\boldsymbol{K}}^2}\right], \quad \boldsymbol{C}_{\boldsymbol{X}}(\boldsymbol{z}) = \exp\left[-\frac{\boldsymbol{z}^2}{2\sigma_{\boldsymbol{X}}^2}\right]$$

## From: On the origin of species by sympatric speciation Ulf Dieckmann & Michael Doebeli, Nature, 1999

#### «Useless» simulation



# Individual-based representation



### Useful simulation, the result is in comfortable format

| 1 <b>-</b> 1 | T                    | 5                   | ēΥ.         | • + | F  |
|--------------|----------------------|---------------------|-------------|-----|----|
| ec1733       | MAVRI                | ECG.                | AT.         | HR  | TD |
| ec455        | MAVRI                | ECG.                | AT.         | DR  | TD |
| ec954        | MAVRI                | ECG.                | AT)         | ΗP  | ΥN |
| ed829        | MAVRI                | ECG.                | AT)         | HR  | LH |
| ed899        | MAVRI                | ECG.                | AT.         | DR  | WD |
| ec1617       | MAVRI                | ECG.                | AT          | DR  | WD |
| ed672        | MAVRI                | ECG.                | AT)         | ΗP  | ΥN |
| ec1233       | MAVRI                | ECG.                | AT)         | HR  | TD |
| ec1274       | MALRI                | ECG.                | AT(         | ΩI  | TD |
| ec654        | MTVR                 | ECG.                | AD)         | ΗW  | TS |
| ed463        | MAV <mark>R</mark> I | ECG.                | AT.         | DR  | TD |
| ec1010       | MTVR                 | ECG.                | AD)         | ΗW  | TS |
| ec1128       | MAV <mark>R</mark> I | E <mark>T</mark> G, | AT)         | HR  | ΤH |
| ec1736       | MAVRI                | ECG.                | AT(         | ΩI  | QD |
| ec1201       | MAVRI                | ECG.                | AT(         | ΩI  | ТP |
| ed947        | YAV <mark>r</mark> i | ECG.                | AV.         | HR  | HD |
| ec210        | MAV <mark>R</mark> I | ECG.                | ΑT          | DR  | TD |
| ec1411       | MAV <mark>RI</mark>  | RIG                 | AT]         | HR  | ТΥ |
| ed316        | MAV <mark>R</mark> I | ECG.                | AT          | DR  | TD |
| ed955        | MAV <mark>R</mark> I | ECG.                | AHI         | HW  | QA |
| 20699        | MAVDI                | FCC                 | $\Delta T'$ | nт  | OD |

| 423 <mark>G<mark>TC</mark>TT</mark>  | GICCCGCC | T <mark>AATA</mark> TC                | CGCTC    |
|--------------------------------------|----------|---------------------------------------|----------|
| 1176 <mark>6 T</mark> C T T          | GTCCCCC  | T <mark>AAT</mark> A TC               | OGCIO    |
| 498 <mark>GTCTT</mark>               | GICCCC   | T <mark>AATA</mark> TC                | CGCTC    |
| 169 <mark>GTCTT</mark>               | GTCCCCC  | T <mark>AATA</mark> TC                |          |
| 291 <mark>G<mark>TC</mark>TT</mark>  | GICCGC   | T <mark>AATA</mark> TC                | ICG C TO |
| 1037 <mark>AACTC</mark>              | GTCCCCC  | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 453 <mark>AACTC</mark>               | GTCCCCC  | AAA <mark>T</mark> A <mark>TC</mark>  | CCCTZ    |
| 782 <mark>IC</mark> AGC              | ATCCCCC  | AATTGCC                               | CCCT.    |
| 1739 <mark>AA</mark> CTC             | Gracecc  | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 1006 <mark>AACTC</mark>              | GICCCC   | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 599 <mark>Aacte</mark>               | GICCCC   | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 650 <mark>Gaatt</mark>               | GICCACCC | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 1299 <mark>AACTC</mark>              | GICCCC   | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 1609 <mark>6 a a t t</mark>          | GICCCC   | AAA <mark>T</mark> A <mark>TC</mark>  | CCGT     |
| 769 <mark>AACT</mark> C              | GICCCCC  | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 7 <mark>AACT</mark> C                | GTCCCCC  | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 995 <mark>AACTC</mark>               | GICCCC   | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 1121 <mark>GTC</mark> TT             | GICCGCC  | T <mark>AAT</mark> ATC                | CCC      |
| 336 <mark>GTCTT</mark>               | GICCGCC  | T <mark>AATA</mark> TC                | CCC      |
| 1606 <mark>GTC</mark> TT             | GICCGC   | T <mark>AATA</mark> TC                | CCC      |
| 285 <mark>G<mark>aa</mark>tti</mark> | GICCCCC  | AAA <mark>T</mark> A <mark>T</mark> C | ICCG TO  |
| 781 <mark>AACTC</mark>               | GICCCCC  | AAA <mark>T</mark> A <mark>TC</mark>  | CCCT     |
| 1796 <mark>AACTC</mark>              | GICCCCC  | AAA <mark>T</mark> AT <mark>C</mark>  | CCCT     |
|                                      |          |                                       |          |

## Motivation: explaining evolution of species flocks

Species flock is a group of species which evolved in confines of the same eco-system from a single ancestor

Species flocks are peculiar to ancient giant freshwater lakes like lake Baikal and Lake Tanganyika, where the most famous and species-rich is set of flocks of ciclids





# Tanganyika



62































Pip. 2. - Cleopetre Initaliale Geamann, 1905.











# Baikal



0.1

Microsporidia parasiting on Baikalian amphipods comprise the first fully parasitic species flocks. The main surprise here is absolute lack of evidence for any co-evolution between host and parasite. Another problem is coexistence of several parasite species on a single host species: this must cause ultimate extinction of the latter





![](_page_12_Picture_1.jpeg)

Baicalia carinata

B. dybowskiana

B. turriformis

## Baicaliidae example

![](_page_13_Figure_1.jpeg)

Some evolutionary relations within a flock cannot be represented correctly by a tree

![](_page_14_Figure_1.jpeg)

# Shackleton cycles: evolution in changing environment

![](_page_15_Figure_1.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_1.jpeg)

In Lake Baikal there are no strict specialists, at least close to surface, where impact of environmental changes is more dramatic.

Are there specialists in the abyssal zone? It is not yet known, but this zone is relatively young.

# Shackleton cycles: evolution in changing environment

![](_page_21_Figure_1.jpeg)

![](_page_22_Picture_0.jpeg)

Subdivision in *Gmelinoides fasciatus* (Environmental changes are not the only cause of species subdivision)

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_0.jpeg)

Are different populations separate species? How could this pattern occur?

![](_page_23_Picture_2.jpeg)

![](_page_23_Figure_3.jpeg)

## **Coordinated evolution of amino acid sequences**

## Some features of proteins preserved in evolution involve more then single amino acid residue

- •There is no obvious transition from one state to another: intermediate state is deleterious
- •Numerous physical or/and chemical properties of amino acid residues may be conserved, as the consequences the values of these properties appear to be highly correlated in evolution
- •More then two residues may take part in a group
- •Correlated groups are quite common in proteins

![](_page_25_Picture_5.jpeg)

![](_page_26_Picture_0.jpeg)

•To elucidate the population mechanism allowing coordinated evolution of amino acid residues;

•Using computer simulation of microevolutionary events, to find the conditions favouring coordinated evolution

•To design statistical tests allowing one to study coordinated evolution or/and take it into account when necessary

#### Model

#### Organism

Hermaphroditic, but during the same reproduction cycle may have only one gender
Diplod and has maternally transferred («mitochondrial») DNA
Has age limit measured in reproductive cycles

- •Fitness depends on one protein coding gene and
- population density limited
- resource)
- •Number of progeny is Poisson distributed

#### Mitochondrial marker

 $x_i \in A, C, G, T$ 

- Single vector
- •No recombination
- •Transfered from mother to all her progeny
- •Does not affect fitness
- •All substitutions (mutations) are equiprobable

1176<mark>C</mark> 498 <mark>G</mark> 169. 291 1037 782 1739 1006599 650 995. 1121<mark>G</mark> 336 <mark>G</mark> 1606<mark>G</mark> 285 G CCCCCC

#### Nuclear gene

- •Sequence consists of 20 «amino acids»
- •Each substitution is equiprobable;
- •Each residue has property, which changes from 0 to 19
- •Each sequence consists of 2 parts: «the neutral one, where sequences does not affect fitness of the organism, and **non-neutral one,**where fitness is function of the sum of properties:  $f = \sum (x_i - s_i)$

| 1-1    | <u> </u>             | - D  | ey.                | Τ.  | F                |
|--------|----------------------|------|--------------------|-----|------------------|
| ec1733 | MAVRI                | ECG  | ATH                | R'  | D                |
| ec455  | MAVR                 | ECG  | ATD                | R   | D                |
| ec954  | MAVR                 | ECG  | ATH                | P   | ZN               |
| ed829  | MAVR                 | ECG  | A <mark>T</mark> H | RI  | LΗ               |
| ec899  | MAVR                 | ECG  | ATD                | R   | <b>V</b> D       |
| ec1617 | MAVR                 | ECG  | ATD                | R   | Ð                |
| ed672  | MAVR                 | ECG  | ATH                | P   | ΖN               |
| ec1233 | MAVR                 | ECG  | A <mark>T</mark> H | R   | D                |
| ec1274 | MAL                  | ECG  | <mark>a</mark> tq  | I'  | D                |
| ec654  | MTVR                 | ECG  | A <mark>D</mark> H | W.  | cs               |
| ed463  | MAVR                 | ECG  | ATD                | R   | CD.              |
| ec1010 | MTVR                 | ECG  | A <mark>D</mark> H | W.  | cs               |
| ec1128 | MAVR                 | ETG  | ATH                | R   | CH               |
| ec1736 | MAVR                 | ECG  | <mark>a</mark> tq  | Iς  | 2D               |
| ec1201 | MAVR                 | ECG  | <mark>a</mark> tq  | I.  | CР               |
| ed947  | YAV <mark>R</mark> I | ECG  | AVH                | RI  | ID               |
| ed210  | MAVRI                | ECG  | ATD                | R   | D                |
| ec1411 | MAVRI                | RIG  | ATH                | R'  | CΥ               |
| ed316  | MAVR                 | ECG  | ATD                | R   | D                |
| ec955  | MAVR                 | ECG  | AHH                | WÇ  | )A               |
| 20699  | MAVD                 | RCC. | $\Delta T \cap$    | iτc | <mark>n</mark> D |

### Interactions between organisms

1) The organisms who reached maximal age allowed die;

2)Each of the survivors determine it's gender for this round;

3)Density-dependent decrease of survival rate is introduced;

 $f = f\left(1 - \frac{n}{N}\right)$ 

4)Pairs («families» are formed according to the random gender-choice made at stage (2);

5)Each pair «decides» how many children will they have. The number of children is Poisson-distributed;

6) Children are produced (if their number exceed the max. Number, their number is reduced proportionally), They inherit mother's «mitochondrial» marker and one «nuclear» allel from each parent;

7)Progeny fitness according to the group rule is calculated (Full dominance in this study)

8)New density dependent viability is calculated and the unlucky «die», the rest increase their age;

9)Stage (1) occurs. Life goes on.

### Mask size, number of kids etc.

![](_page_30_Figure_1.jpeg)

### Group size influences relaxation curve after a jump

![](_page_31_Figure_1.jpeg)

# Relaxation curves depend on exact start and target values

![](_page_32_Figure_1.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_34_Picture_0.jpeg)

## **Optimum shift without coordinated evolution**

![](_page_35_Picture_1.jpeg)

# Two optinmal values co-existing do not cause co-ordinated substitutions

![](_page_36_Figure_1.jpeg)

## Double jump

![](_page_37_Figure_1.jpeg)

![](_page_38_Picture_0.jpeg)

| SampleAA.phy                   |                | •                                            | . 🗆 🗙                                     |
|--------------------------------|----------------|----------------------------------------------|-------------------------------------------|
| File $\nabla$ Props $\nabla$   | Sites ⊽        | Species $\nabla$                             | Foote                                     |
| sel=3                          |                | Seq:2                                        | 3 <b>Þ</b> ðs                             |
| Spec1119<br>Spec1530           |                | ILMDQGT                                      | GPCT<br>GPCA                              |
| Spec907<br>Spec34              | K WMR          | WNMCQGY<br>WLYDQGQ                           | VPLA<br>VPQA                              |
| Spec1324<br>Spec1742           | K WMR<br>K WMS | TLMDRSY<br>WMYDQGY                           | V <mark>PD</mark> A<br>V <mark>PLA</mark> |
| Spec228<br>Spec652             | K WMR<br>K WMR | WLYDQGQ<br>WLYDQGQ                           | VPQA<br>VPLA                              |
| Spec1176<br>Spec1837           |                | WLYDQGQ<br>WLMDLPY                           | VPLA<br>QPPA                              |
| Spec1132<br>Spec1689           |                | WENDOGY                                      | PYLA<br>VPLA                              |
| Spec1147<br>Spec1864           | K WMR          | WRMLQGY                                      | PYLA<br>GPCT                              |
| Spec1883<br>Spec2026           | K WMR<br>K WMR | WLMHQPY<br>WMYDQGY                           | VPLA<br>VPLA                              |
| Spec344<br>Spec104             | K WMR          | WMYDQGY<br>W <mark>R</mark> MEQGY            | VPLA<br>IPL <mark>E</mark>                |
| Spec1207<br>Spec713            |                | WMYDQGY<br>WCMEQGY<br>WLMD <mark>M</mark> CY | VPLA<br>IPLE<br>MIA                       |
| Spec1871<br>Spec727            | KWMR           | WMYDQGY<br>WKYDYGY                           | VPLA<br>VPDA                              |
| Spec373<br>Spec1073            | K WMR<br>K WMR | W <mark>KMDQ</mark> GY<br>GCMEQGY            | EPLE<br>IPLE                              |
| Spec390<br>Spec1107            | K WMR<br>K WMR | GCMEQGY<br>ILMWQGT                           | IPLE<br>GPC <mark>T</mark>                |
| Spec594<br>Spec1628            | K WMR          | WLYDQGQ<br>WLYDQGQ                           | VPLA<br>VPLA                              |
| Spec305<br>Spec995<br>Spec1223 |                | WLMHQPY                                      | VPDA<br>VPLA<br>APLA                      |
| Spec1223                       |                | WAMDQGY<br>WLMDOGY                           | VSAY<br>VVMA                              |
| Spec1813                       | K WMR          | WLMDPPY                                      | CPPA                                      |
| ][><-+_ 📢 💽                    |                |                                              |                                           |

Double shift of optimal value results in coordinated sunstitutions!

# Repeated change of environment promotes coordinated substitutions

![](_page_40_Figure_1.jpeg)

## Very preliminary conclusions:

Number of group members must be more then 2. Coordinated substitutions become more frequent with the increase of number of group members.
Periodic shift of optimim promotes coordinated substitutions

•New optimal value of a property must be reached at a single mutation