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DNA Sequences

OrangutanOrangutan AACGTTTTAACGTTTT
Gorilla Gorilla AAGGTTTAAGGTTT
ChimpChimp AGGTTTTAGGTTTT
Homo SapiensHomo Sapiens AGGATTTTTAGGATTTTT
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DNA Alignment

OrangutanOrangutan A A C G T T T T -A A C G T T T T -
Gorilla Gorilla A A G G T T T  - -A A G G T T T  - -
ChimpChimp A -  G G T T T T -A -  G G T T T T -
Homo SapiensHomo Sapiens A G G A T T T T TA G G A T T T T T
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Phylogeny of great Apes

Orangutan Gorilla Chimp Homo Sapiens

common ancestor time
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Remember !
 Input need not be DNA or protein 

sequence data → gene order data
 Moret et al (2001) GRAPPA: a high performance 

computational tool for phylogeny 
reconstruction from gene-order data

 Model need not be a tree → networks
 Gusfield et al (2003) Efficient reconstruction of 

phylogenetic networks with constrained 
recombination

 Output need not be a strictly bifurcating 
tree → multifurcating tree
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Remember !
 Input need not be DNA or protein 

sequence data → gene order data
 Moret et al (2001) GRAPPA: a high performance 

computational tool for phylogeny 
reconstruction from gene-order data.

 Model need not be a tree → networks
 Gusfield et al (2003) Efficient reconstruction of 

phylogenetic networks with constrained 
recombination.

 Output need not be a strictly bifurcating 
tree → multifurcating tree

We focus on computation of 
strictly bifurcating 

phylogenetic trees with 
maximum likelihood for 

DNA and Protein sequence 
data!
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Outline
 Introduction

 Computation of Phylogenies 
 Maximum Likelihood
 Web Servers

 Computing ML Trees:
 Search Algorithms
 Optimization of the ML function
 Model Issues
 Parallelism

 Related Topics
 Summary of Future Challenges
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Phylogenetics
 Input: “good” multiple Alignment
 Output: unrooted binary tree
 Various methods for phylogenetic 

inference
 Neighbor Joining (fast & simple)
 Maximum Parsimony (relatively fast & 

simple)
 Maximum Likelihood (complex & slow)
 Bayesian Methods (complex & slower)
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Phylogenetics
 Input: “good” multiple Alignment
 Output: unrooted binary tree
 Various methods for phylogenetic 

inference
 Neighbor Joining (fast & simple)
 Maximum Parsimony (relatively fast & 

simple)
 Maximum Likelihood (complex & slow)
 Bayesian Methods (complex & slower)

ML & Bayesian: explicit 
model choice
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Phylogenetics
 Input: “good” multiple Alignment
 Output: unrooted binary tree
 Various methods for phylogenetic 

inference
 Neighbor Joining (fast & simple)
 Maximum Parsimony (relatively fast & 

simple)
 Maximum Likelihood (complex & slow)
 Bayesian Methods (complex & slower)

Complex Methods & 
Models required to 
reconstruct large & 
complicated trees !

Focus of this lecture is on  
Maximum Likelihood!
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Motivation
 Phylogenies to obtain insights in medical and 

biological research:
 Epidemiology
 Virology
 Conservation Biology
 Cancer, e.g., Papillomavirus phylogenies
 Classification of unidentified sequences
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Use Case: Rapid Phylogenetic 
Classification of unidentified Sequences

Seq 2Seq 2 Seq 4Seq 4

Seq 1Seq 1 Seq 3Seq 3

query sequence(s)query sequence(s)

reference tree
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Use Case: Rapid Phylogenetic 
Classification of unidentified Sequences

Seq 2Seq 2 Seq 4Seq 4

Seq 1Seq 1 Seq 3Seq 3

query sequence(s)query sequence(s)

reference tree

•Sequences in AC filters
•Microbial communities
•Birdstrike victims
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Use Case: Rapid Phylogenetic 
Classification of unidentified Sequences

Seq 2Seq 2 Seq 4Seq 4

Seq 1Seq 1 Seq 3Seq 3

query sequence(s)query sequence(s)

?

reference tree
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Use Case: Rapid Phylogenetic 
Classification of unidentified Sequences

Seq 2Seq 2 Seq 4Seq 4

Seq 1Seq 1 Seq 3Seq 3

query sequence(s)query sequence(s)

?

reference tree

Can we compute an assignment 
to certain regions of the 
reference tree with some 
measure of support?
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Phylogenetic Classification: 
Input Data

reference sequences &
reference tree

query sequences, 
e.g., short 454-reads (approx 250bp)

sequence 
alignment
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Phylogenetic Classification: 
Input Data

reference sequences &
reference tree

query sequences, 
e.g., short 454-reads (approx 250bp)

sequence 
alignment

How do we align query 
sequences to the reference 
alignment?
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Spread of Avian Influenza 
1996-2004

Courtesy of Dan Janies, Ohio State



 Alexandros Stamatakis, July 2008

Challenges for Phyloinformatics
 Holy grail: “Tree of Life”
 Amount of available data grows at a higher rate than 

algorithms are getting faster
 Large multi-gene phylogenies
 Port codes to multi-core architectures
 What is a “good alignment”  in a phylogenetic context?
 How do we assess confidence for our results?
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The Tree of Life
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The number of trees
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The number of trees
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The number of trees
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The number of trees
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The number of trees 
explodes!

BANG !
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The Algorithmic Problem
 Number of potential trees grows 

exponentially

2.84  * 10^7650

7.905.853.580.62515

2.027.02510

155

# Trees# Taxa
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The Algorithmic Problem
 Number of potential trees grows 

exponentially

2.84  * 10^7650

7.905.853.580.62515

2.027.02510

155

# Trees# Taxa
This is ≈ the 
number of 

atoms in the 
universe 
10^80
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Outline
 Introduction

 Computation of Phylogenies 
 Maximum Likelihood
 Web Servers

 Computing ML Trees:
 Search Algorithms
 Optimization of the ML function
 Model Issues
 Parallelism

 Related Topics
 Summary of Future Challenges
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel



 Alexandros Stamatakis, July 2008

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

virtual root: vrvirtual root: vr
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Lots of floating point 
operations!
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3

optimize branch lengthsoptimize branch lengths
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Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A  C  G  TA  C  G  T

SubstitutionSubstitution
modelmodel

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA  A  ππC  C  ππG  G  ππT T 

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3

optimize model parametersoptimize model parameters
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Maximum Likelihood

Goal: Obtain topology with maximum likelihood value

Problem I: Number of possible topologies is exponential in n 

Problem II: Computation of likelihood function is expensive

Problem III: Probably high score accuracy required

Problem IV: High memory consumption

Solution: 

• New Algorithms

• New Models 

• High Performance Computing
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Maximum Likelihood

Goal: Obtain topology with maximum likelihood value

Problem I: Number of possible topologies is exponential in n 

Problem II: Computation of likelihood function is expensive

Problem III: Probably high score accuracy required

Problem IV: High memory consumption

Solution: 

• New Algorithms

• New Models 

• High Performance Computing

Exemplary solutions: 
RAxML 

Randomized 
Axelerated 

Maximum Likelihood
Open-Source Code
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Outline
 Introduction

 Computation of Phylogenies 
 Maximum Likelihood
 Web Servers

 Computing ML Trees:
 Search Algorithms
 Optimization of the ML function
 Model Issues
 Parallelism

 Related Topics
 Summary of Future Challenges
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RAxML Usage & 
Web Servers

 Since August 2006 approx. 3,000 downloads from distinct IPs
 USA: 44%
 Germany: 11%
 58 other countries < 5%

 RAxML Web-Servers using Rapid Bootstrap Algorithm
 San Diego Supercomputing Center

 Since December 2007 over 3,000 jobs
 http://phylobench.vital-it.ch/raxml-bb/

 Vital-IT unit of Swiss Institute of Bioinformatics
 Since September 2007 over 8,000 jobs
 http://8ball.sdsc.edu:8889/cipres-web/Bootstrap.do
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 Maximum Likelihood
 Web Servers
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Basic Algorithm
● Compute comprehensive starting tree

●  Complete Random Starting Tree (MrBayes, Garli)
●  Neighbor Joining (IQPNNI, PHYML)
●  Maximum Parsimony (RAxML)

● Optimize tree by application of standard topological alterations
● NNI: Nearest Neighbor Interchange
● TBR: Tree Bisection Reconnection
● SPR: Subtree Pruning Re-Grafting (Subtree Rearrangements)

● Search Algorithms
● Hill-Climbing
● Simulated Annealing
● Genetic Algorithms
● Metropolis-Coupled Markov-Chain Monte-Carlo (MC³)
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NNI
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NNI
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NNI
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NNI
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SPR

ST5

ST2

ST6

ST4

ST3

ST1
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SPR

ST5

ST2

ST6

ST4

ST3

ST1
+1
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SPR

ST5

ST2

ST6

ST4

ST3

ST1
+1
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SPR

ST5

ST2ST6

ST4

ST3

ST1
+1
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SPR

ST5

ST2ST6

ST4

ST3

ST1
+1
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SPR

ST5

ST2

ST6 ST4

ST3

ST1
+2
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SPR

ST5

ST2

ST6 ST4

ST3

ST1
+2
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SPR

ST5

ST2

ST6 ST4

ST3

ST1

Optimize all branches
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TBR
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TBR
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TBR
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TBR
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TBR
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TBR
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How does RAxML work?

Compute randomized stepwise addition order
Maximum Parsimony tree
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Stepwise Addition Order 
Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4



 Alexandros Stamatakis, July 2008

Stepwise Addition Order 
Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4
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Stepwise Addition Order 
Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2?
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Stepwise Addition Order 
Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2
Best MP score for insertion
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Stepwise Addition Order 
Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2
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Stepwise Addition Order 
Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2
Seq0?
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Stepwise Addition Order 
Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

Seq0
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Stepwise Addition Order 
Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

Seq0

Distinct addition order, e.g., 
Seq0→Seq1→Seq2→Seq3→Seq4

can yield a different tree



 Alexandros Stamatakis, July 2008

How does it work?

Compute randomized stepwise addition order
Maximum Parsimony tree

Advantage of RAxML: 
search starts from distinct 

points in search space 
every time
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How does it work?

Apply lazy subtree rearrangements

Compute randomized stepwise addition order
Maximum Parsimony tree

Most current ML 
implementations use a kind 

of lazy SPR move
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How does it work?

Apply exhaustive lazy subtree rearrangements

Iterate while tree improves

Compute randomized stepwise addition order
Maximum Parsimony tree
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Subtree Rearrangements

ST5

ST2

ST6 ST4

ST3

ST1

Optimize all branches?
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Lazy Subtree 
Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1
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Lazy Subtree 
Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1
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Why does this work?
 Lazy subtree rearrangements:

 Update less likelihood vectors → significantly 
faster 

 Allows for higher rearrangement settings  → 
better trees

 Likelihood depends strongly on topology
 Fast exploration of large number of topologies
 Fast pre-scoring of topologies
 Store best 20 trees from each rearrangement cycle
 Full ML optimization of best 20 trees only
 Experimental results justify this mechanism
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Likelihood Cutoff

ST5

ST2

ST6

ST4

ST3

ST1
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Likelihood Cutoff

ST5

ST2

ST6

ST4

ST3

ST1

If Likelihood at this point ≤ a 
dynamic threshold value 
don’t descend further into 

subtree
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Likelihood Cutoff

ST5

ST2

ST6

ST4

ST3

ST1

ST6 These LSRs are not 
executed!
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The Rearrangement 
Setting

ST6
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The Rearrangement 
Setting

ST6

This setting has a 
significant impact on 

performance!
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Confidence Values
 Tree without node confidence 

values is mostly useless
 Problem: 

 Confidence value calculation is major 
computational obstacle

 We can compute large trees but not 
analyze them: compute ≠analyze !
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A Tree with Confidence Values
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Confidence Values
 Tree without node confidence 

values is mostly useless
 Problem: 

 Confidence value calculation is major 
computational obstacle

 We can compute large trees but not 
analyze them: compute ≠analyze !

 Current Slow Methods
 Sampling with Bayesian methods
 Non-parametric Bootstrapping
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Bootstrapping
Original Alignment

Perturbation

compute tree compute tree compute tree
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Bootstrapping
Original Alignment

Perturbation

compute tree compute tree compute tree

This needs to be done 
100-1,000 times!
Embarrassingly parallel 
problem!
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Bootstrapping
Original Alignment

Perturbation

compute tree compute tree compute tree

How many times? → 
Current research on 
Bootstopping criterion
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Rapid Bootstrapping Algorithm:
Algorithmic Engineering

 Tested on 22 diverse (mammals, bacteria, archaea, grasses, 
fishes, plants, viral) real-world DNA/AA single-/multi-gene 
datasets containing 125-7,764 sequences

 Pearson correlation on best-scoring ML trees between RBS 
(Rapid BS) & SBS (Standard BS) support values 0.95-0.99 
(except one dataset at 0.91), average 0.97

 Weighted topological distance < 6%, average 4%
 Program Acceleration: 8-20, average ≈ 15

 Acceleration by one order of magnitude
 Full ML analysis (100BS + ML search) of datasets of 

up to 5,000 sequences within less than 5 days on 
your desktop!

 Allows for a sufficiently large number of Bootstrap 
replicates

 Released in January 2008
 To be published in Systematic Biology soon
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Relative Accuracy: Correlation 
on 3,500 rBCL sequences

Correlation:0.98
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Rapid Bootstrap Inference 
Times for 100 BS replicates 

GARLI

Standard-RAxML

Rapid-RAxML

PHYML
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Impact of Rapid Bootstrap

Courtesy of  Mark Miller SDSC

RAxML Rapid 
Bootstrap
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 Computation of Phylogenies 
 Maximum Likelihood
 Web Servers

 Computing ML Trees:
 Search Algorithms
 Optimization of the ML function
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 Parallelism
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 Summary of Future Challenges
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Optimization of the Likelihood 
Function

 Likelihood functions (usually 3-4 functions) 
account for over 95% of total execution time

 Algorithmic Optimization
 Detection of equal patterns and re-use of previously 

computed values
 Special Function version for tip/tip and tip/inner 

node likelihood vectors
 Technical Optimization

 Manual loop-unrolling
 Consider pipeline efficiency
 Replace x/y by x * 1/y etc
 Cache efficiency
 Individual ML implementation for each substitution 

model
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Expensive Likelihood Function: 
Consequences

 Likelihood Function is expensive
 Try to reduce # of invocations by 

algorithmic means
 Use “cheaper” (in terms of FLOPs) criteria to 

pre-score alternative trees
 Problem: These cheaper methods must 

correlate with the Likelihood function
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Model Selection
 Different statistical models of evolution

 Complex models → many FLOPs & good 
accuracy

 Simple models → less FLOPs & bad 
accuracy

 Trade-Off: speed versus accuracy
 Likelihood surface is smooth for complex 

models → less local maxima
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Memory Organization: Tip 
Vectors

Tip vectors don’t 
change with topology 

and are cheap to 
calculate
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Memory Organization: Inner 
Vectors with Unrooted View
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Memory Organization: Inner 
Vectors with Rooted View

Virtual Root

NULL

NULL

NULL

NULL
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Memory Organization: Inner 
Vectors with Rooted View

New Virtual Root

NULL

NULL

NULL

NULL

Relocate & Re-compute 
Likelihood Vector
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Memory Organization: Inner 
Vectors with Rooted View

New Virtual Root

NULL

NULL

NULL

NULL
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Memory Organization: Inner 
Vectors with Rooted View

New Virtual Root

NULL

NULL

NULL

NULL

Memory Consumpption =Θ(#seqs*#patterns)
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Outline
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 Search Algorithms
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Rate Heterogeneity among 
Sites

 Efficient approximation for the “gold standard” GTR+Γ model of 
rate heterogeneity among sites
 execution time improvement: factor 4
 memory footprint reduction: factor 4 
 returns equally good trees under GTR+Γ

ACGGGGGGGGGGGTTTTCCCCC
ATGGGGGGGGGGGTTTCCCCCC
ACCGGGGGGGGGGTTTTGCCCC
AGGGGGGGGGGGCTTTTCCCCC
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Γ-Distribution
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Γ-Distribution
Small α high rate 
heterogeneity
Large α low rate 
heterogeneity
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Discrete Γ-Distribution

r0

r1
r2

r3
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ML-Loops
CAT-LOOP

for(i = 0; i < m; i++)
{
   cat = category[i];
   r = rate[cat];
   p[i] = f(q[i], pq, r[i], pr, r);
}

Γ-LOOP

for(i = 0; i < m; i++)
{
   p[i].g0 = f(q[i], pq, r[i], pr, r0);
   p[i].g1 = f(q[i], pq, r[i], pr, r1);
   p[i].g2 = f(q[i], pq, r[i], pr, r2));
   p[i].g3 = f(q[i], pq, r[i], pr, r3));
}
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715 Sequences under 
HKY85+Γ

C.E. Robertson et al (2005) 
Phylogenetic diversity and 
ecology of environmental 
Archaea, In Current Opinion in 
Microbiology.

Execution 
Time

Log Likelihood 
Score under Γ
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8,864 Bacteria under GTR+Γ
and GTR+CAT

Log Likelihood 
Score under Γ

14 days14 days7 days7 days

Execution 
Time



 Alexandros Stamatakis, July 2008

Current Challenge

 Adapt likelihood function and data 
structures to increasingly common 
“gappy” multi-gene alignments
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A Current Problem:
Handling Multi-Gene Alignments

Red Gene      Yellow Gene 

Sequence 1

Sequence 5

Missing Data Data
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A Multi-Gene Model
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A Multi-Gene Model
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A Multi-Gene Model
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A Multi-Gene Model

LogLH (T) = LogLh (T|Red)
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LogLH (T) = LogLh (T|Red) +
LogLH(T|Yellow)

A Multi-Gene Model



 Alexandros Stamatakis, July 2008

Initial Results

 2 datasets
 400 sequences, 13,000 base-pairs (alignment columns), 

11 genes, gappyness 70%
  2,200 sequences, 51,000 base-pairs, 68 genes, 

gappyness  90% (memory footprint 9GB)

 Full tree traversal (AMD Opteron)
 400: 4 times faster
 2,200: 13 times faster

 Branch Length Optimization (AMD Opteron)
 400: 30 times faster
 2,200: 46 times faster

 Initial implementation does not exploit the 
potential memory footprint reduction
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Levels of Parallelism

Embarrassing Parallelism

MPI, CORBA, Grid Technologies
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Embarrassing Parallelism:
MPI Version of RAxML

Master Process

Worker Processes

B-0
B-1 B-3

B-2

B-4

PC-CLUSTER

Interconnection
Network
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Levels of Parallelism

Embarrassing Parallelism

Inference Parallelism

MPI, CORBA, Grid Technologies

MPI, algorithm-dependent
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Inference Parallelism: 
Dependency Problem in RAxML

Apply a Lazy Subtree 
Rearrangement  (LSR) to 

currently best tree and evaluate 
likelihood 
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Inference Parallelism:
Dependency Problem in RAxML

If LSR improves tree 
likelihood keep  altered 

topology
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Inference Parallelism:
Dependency Problem in RAxML

 Each worker process evaluates the rearrangements for one 
subtree at a time

 One optimization cycle consists of 2 * #organisms LSRs
 Many improved topologies are encountered during one cycle
 Many sequential dependencies  hard to parallelize
 Use Non-determinism to solve problem
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Levels of Parallelism

Embarrassing Parallelism

Inference Parallelism

Loop-Level Parallelism

MPI, CORBA, Grid Technologies

MPI, algorithm-dependent

OpenMP, Pthreads, GPUs, 
IBM CELL (Playstation), 
IBM BlueGene,
Clusters with fast Interconnect
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 
95% of total execution 
time !
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 
95% of total execution 
time !
→ simple fine-grained 
parallelization
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Loop Level Parallelism

P

Q
R

virtual root
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Loop Level Parallelism

P

Q
R

virtual root
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Loop Level Parallelism

P

Q
R

virtual root
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Loop-Level Parallelism
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Loop-Level Parallelism
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 HPC for ML & Bayesian 
Phylogenetic Inference

 Proof of Concept & Programming Techniques:
 RAxML on a Graphics Processing Unit 

(completed)
 RAxML on the IBM CELL & Playstation III 

(completed)
 Production Level Parallelizations:

 RAxML with OpenMP (completed)
 RAxML with MPI (completed)
 RAxML on IBM BlueGene (in progress)
 RAxML with Pthreads on Multi-Core 

Architectures (in progress)
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Orchestrating the Phylogenetic Likelihood 
Function on Massively Parallel Machines

 IBM BlueGene/L and BlueGene/P systems 
dominate the top 500 list www.top500.org 
 1,024 slow CPUs per rack
 512 MB or 1 GB of memory per node
 High performance interconnect

 Challenges:
 Distribute tree data structure among CPUs
 Exploit fast collective communication 

network

http://www.top500.org/
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Loop-Level Parallelism on 
BlueGene
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Orchestrating the Phylogenetic Likelihood 
Function on Current Parallel Architectures

 Handle long memory-intensive datasets
 Processes/threads on cores compete for memory access 

bandwidth → memory gap problem
 Which is the best parallel programming paradigm/language  for 

ML in terms of
 Efficiency
 Usability
 Portability
 Programming overhead
 Program Complexity

 Which is the best multi-core architecture for ML (RAxML)?
 Integrate all concepts into one piece of code that scales 

 From 2 cores up to 1,024 CPUs
 On shared & distributed memory machines
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Programming Paradigms
MPI versus OpenMP versus Pthreads

 MPI
 low level distributed memory programming

 significant programming overhead (2 weeks)

 distributed memory model → no joint view of memory space by all processors

 not easy to compile & install → sys admin required

 OpenMP
 high level shared memory programming

 low programming overhead

 no control over the machine/parallelization details

 numerical & performance problems due to lack of control

 not easy to compile & install → specialized compiler required

 Pthreads
 low level shared memory programming library

 significant programming overhead (4 weeks)

 full control over the machine

 easy to compile → it is starting to get used
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Problems with OpenMP

 Special OpenMP-enabled compiler required → non-expert users 
will not exploit parallelism

 Reduction operations (see next slide) non-deterministic → 
numerical operations that should yield identical results yield 
different results

 Fork-Join model → synchronization required for updating every 
single likelihood vector

 What does the OpenMP compiler (Intel icc) do?
 We don't know
 It automatically fixed a bug and yielded very bad 

performance 
 OpenMP is a little bit like Windows: one does not know what it 

does and can not influence what is happening
 But it took only 5 hours to parallelize MrBayes from scratch
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OpenMP Reduction 
Operation

Σ
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OpenMP Reduction 
Operation

Σ
add per-thread sumsLnL= LnL(t0) + LnL(t1) + LnL(t2) + LnL(t3)
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OpenMP Reduction 
Operation

Σ
LnL= LnL(t0) + LnL(t1) + LnL(t2) + LnL(t3)

Order of these additions non-
deterministic in OpenMP, i.e., 
any permutation possible → 
numerical bugs on long 
datasets & many cores
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Thread Pinning

 Thread pinning/mapping to cores has 
significant impact on performance if 
less threads are executed than cores are 
available!

 This happens if 2 threads are started on 
the same socket instead of different ones

 Can cause up to 50% run time differences 
among various mappings of, e.g., 4 
threads onto 8 cores

 We compute speedups based on optimal 
assignments for each configuration
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Test Systems

 IBM BlueGene/L distributed memory
 1,024 CPUs

 SGI Altix 4700 (LRZ Munich)  shared memory
 Total 9,728 cores, we used up to 256 cores
 39 Terabyte of main memory

 Infiniband Cluster
 32 4-way SMPs (single cores) 
 Infiniband interconnect (low latency)

 AMD Barcelona 
 2-way quad core (8 cores)

 Intel Clovertown 
 2-way quad-core (8 cores)

 Sun x4600
 8-way dual core (16 cores)



 Alexandros Stamatakis, July 2008

Test Datasets

 50_5000, 50 taxa, 5,000 bp, (3,066 patterns)
 50_50000, 50 taxa, 50,000 bp (23,285 

patterns)
 50_500000, 50 taxa, 500,000 bp (216,025 

patterns)
 250_500000, 250 taxa, 500,000 bp (403,581 

patterns)
 500_5000, 500 taxa, 5,000 bp (3,829 

patterns)
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Test Datasets

 50_5000, 50 taxa, 5,000 bp, (3,066 patterns)
 50_50000, 50 taxa, 50,000 bp (23,285 

patterns)
 50_500000, 50 taxa, 500,000 bp (216,025 

patterns)
 250_500000, 250 taxa, 500,000 bp (403,581 

patterns)
 500_5000, 500 taxa, 5,000 bp (3,829 

patterns)

Computation to communication ratio 
about 100 times less favourable
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Sun x4600: 
OpenMP versus Pthreads
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AMD Barcelona:
OpenMP versus Pthreads



 Alexandros Stamatakis, July 2008

Infiniband Cluster
 d50_50000 MPI vs. Pthreads vs. OpenMP
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SGI Altix 4700 d50_50000
MPI vs. Pthreads vs. OpenMP
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SGI ALTIX & Infiniband Cluster
Dataset d250_500000 MPI
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IBM BlueGene/L & Infiniband Cluster
d250_500000
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Programming Paradigms: 
Conclusion

 Use MPI and Pthreads:
 More programming overhead 
 More control 
 Enforce data locality with Pthreads for NUMA and MPI for 

distributed memory machines
 Portability (BlueGene, clusters of SMPs)
 Implement this single complicated parallelization once, use generic 

interface to access either Pthreads or MPI communication 
mechanisms

 Pthreads version can be further optimized
 Since easy-to-compile Pthreads-based release in January 2008 → 

Biologists actually use it
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The Ideal Architecture for 
Phylogenetic Inference

OrangutanOrangutan A A C G T T T T -A A C G T T T T -
Gorilla Gorilla A A G G T T T  - -A A G G T T T  - -
ChimpChimp A -  G G T T T T -A -  G G T T T T -
Homo SapiensHomo Sapiens A G G A T T T T TA G G A T T T T T

memory
O(n)

m elements

Standard
CPU

n

m

steer
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The Ideal World:
Basic Phylogenetic Subroutines

BlueGene

Multi-Cores

FPGAs

GPUs

Interface

Algorithmic
Steering
Tree Searches
etc

standard CPU
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The Ideal World:
Basic Phylogenetic Subroutines

BlueGene

Multi-Cores

FPGAs

GPUs

Interface

Algorithmic
Steering
Tree Searches
etc

standard CPU

low latency
network:
reduction &
sync ops memory resides

here
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Outline
 Introduction

 Computation of Phylogenies 
 Maximum Likelihood
 Impact

 Computing ML Trees:
 Search Algorithms
 Optimization of the ML function
 Model Issues
 Parallelism

 Related Topics
 Summary of Future Challenges
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A brief Detour:
Host-Parasite Co-Evolution

Host-Tree
 (Mammals)

Parasite-Tree
 (Lice)

co-evolved?
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What can HPC do for Bioinformatics?
Axelerated Parafit

 “Parafit: statistical test of co-evolution”, Systematic 
Biology 2003

 M. Göker (Tübingen): Need for a faster implementation
 AxParafit (Axelerated Parafit) 

 Application of standard HPC techniques: sequential speedup up to factor 
67

 MPI-parallelization
 Open-Source Code

 Largest co-phylogenetic study to date conducted 
within 8 minutes instead of 4 weeks:

 Alexandros Stamatakis, Alexander Auch, Jan Meier-Kolthoff, Markus 
Göker: “AxPcoords & Parallel AxParafit: Statistical Co-Phylogenetic 
Analyses on Thousands of Taxa”. In BMC Bioinformatics, 8:405, 2007.

 245 downloads from distinct IPs since October 2007
 Current work

 Analysis of complete NCBI data
 SwissGrid-based Web-server
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AxParafit: Sequential 
Performance



 Alexandros Stamatakis, July 2008

AxParafit: Parallel 
Performance
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Outline
 Introduction

 Computation of Phylogenies 
 Maximum Likelihood
 Web Servers

 Computing ML Trees:
 Search Algorithms
 Optimization of the ML function
 Model Issues
 Parallelism

 Related Topics
 Summary of Future Challenges
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Future Challenges
Summary

 HPC: 
 Handle growing alignments
 Exploit multi-core architectures

 Algorithms: 
 Simultaneously compute good trees & support values
 Phylogenetic classification

 Models: 
 Model multi-gene alignments
 Use structure information

 Algorithms & Models: 
 Simultaneous alignment and tree building

 Vision: Simultaneous computation of:
 Alignment
 Tree 
 Ancestral States
 Support Values
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PhD Positions in Munich

 Two PhD positions in Phyloinformatics 
available at Exelixis Lab (LMU Munich)
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Thank you for your 
Attention !

Mount Psiloritis, Crete


