Models, Algorithms, and Parallel Computing for Large-Scale Phylogenetic Inference

Alexandros Stamatakis

The Exelixis Lab Teaching and Research Unit Bioinformatics Department of Computer Science Ludwig-Maximilians-University Munich

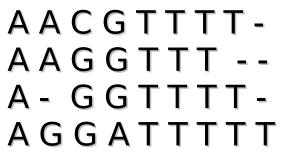
> stamatakis@bio.ifi.lmu.de http://icwww.epfl.ch/~stamatak

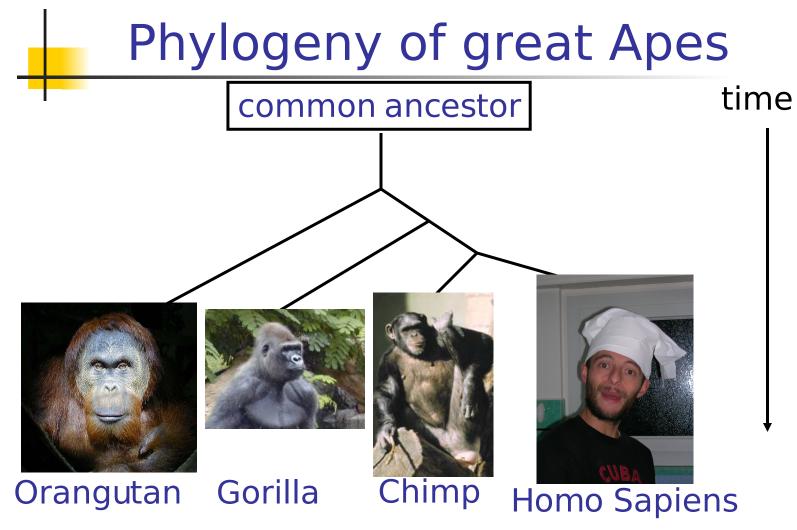
DNA Sequences

Orangutan AACGTTTT Gorilla AAGGTTT Chimp AGGTTTT Homo Sapiens AGGATTTT

DNA Alignment

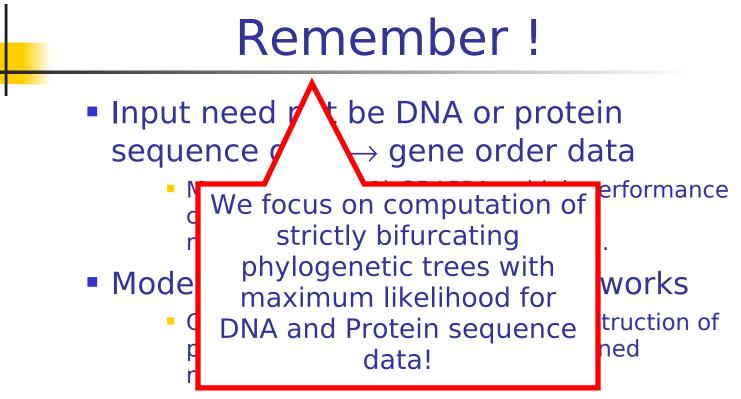
Orangutan Gorilla Chimp Homo Sapiens





Remember !

- Input need not be DNA or protein sequence data → gene order data
 - Moret et al (2001) GRAPPA: a high performance computational tool for phylogeny reconstruction from gene-order data
- Model need not be a tree \rightarrow networks
 - Gusfield et al (2003) Efficient reconstruction of phylogenetic networks with constrained recombination
- Output need not be a strictly bifurcating tree → multifurcating tree



 Output need not be a strictly bifurcating tree → multifurcating tree

Outline

- Introduction
 - Computation of Phylogenies
 - Maximum Likelihood
 - Web Servers
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges

Phylogenetics

- Input: "good" multiple Alignment
- Output: unrooted binary tree
- Various methods for phylogenetic inference
 - Neighbor Joining (fast & simple)
 - Maximum Parsimony (relatively fast & simple)
 - Maximum Likelihood (complex & slow)
 - Bayesian Methods (complex & slower)

Phylogenetics

- Input: "good" multiple Alignment
- Output: un ML & Bayesian: explicit
- Various me model choice inference
 - Neighbor Joini (ast & simple)
 - Maximum Par mony (relatively fast & simple)
 - Maximum Likelihood (complex & slow)
 - Bayesian Methods (complex & slower)

Phylogenetics

- Input: "goo
- Output: unr
- Various me inference
 - Neighbor J

Complex Methods & Models required to reconstruct large & complicated trees !

Focus of this lecture is on Maximum Likelihood!

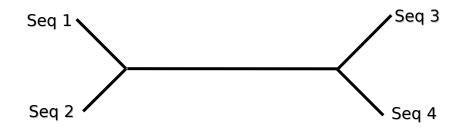
- Maximum Pars (relatively fast & simple)
- Maximum Likelihood (complex & slow)
- Bayesian Methods (complex & slower)

Motivation

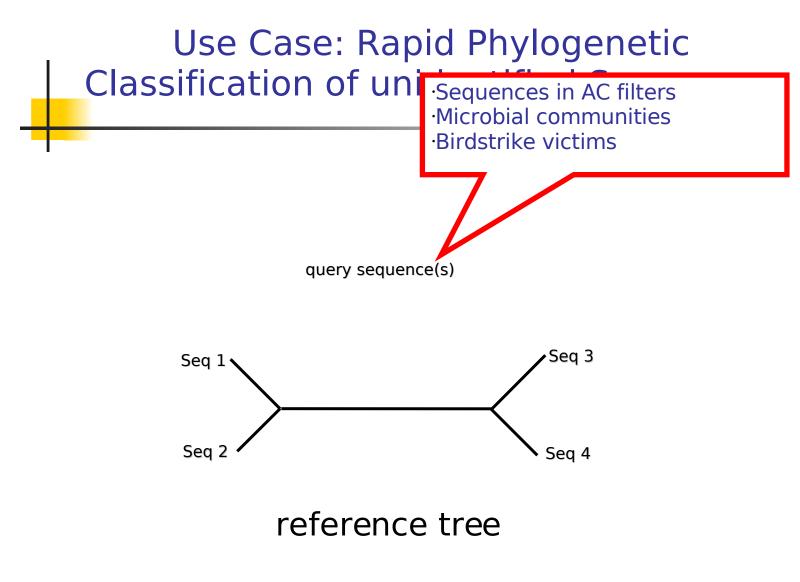
- Phylogenies to obtain insights in medical and biological research:
 - Epidemiology
 - Virology
 - Conservation Biology
 - Cancer, e.g., Papillomavirus phylogenies
 - Classification of unidentified sequences

Use Case: Rapid Phylogenetic Classification of unidentified Sequences

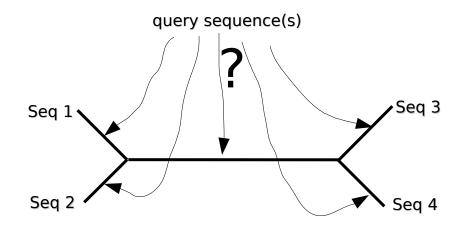
query sequence(s)



reference tree

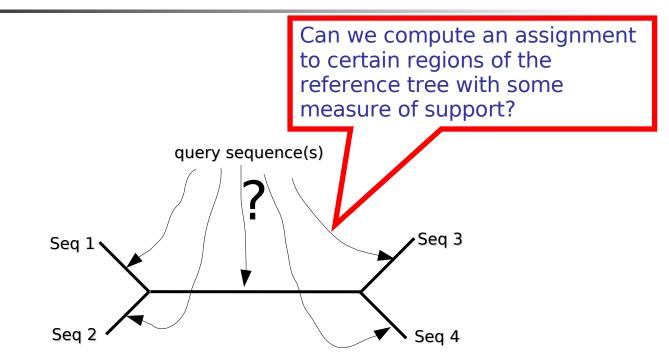


Use Case: Rapid Phylogenetic Classification of unidentified Sequences



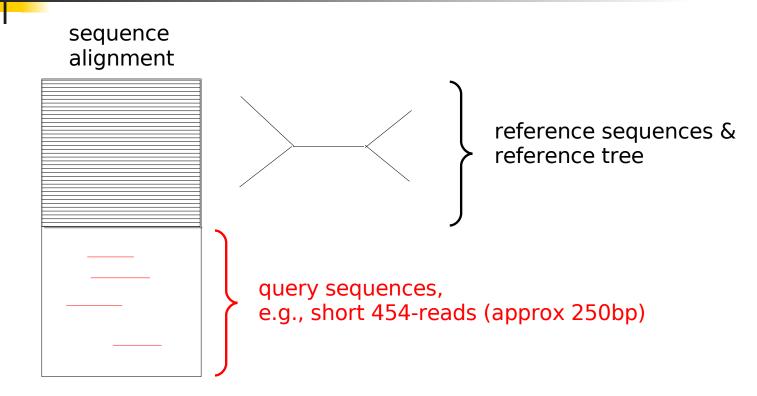
reference tree

Use Case: Rapid Phylogenetic Classification of unidentified Sequences

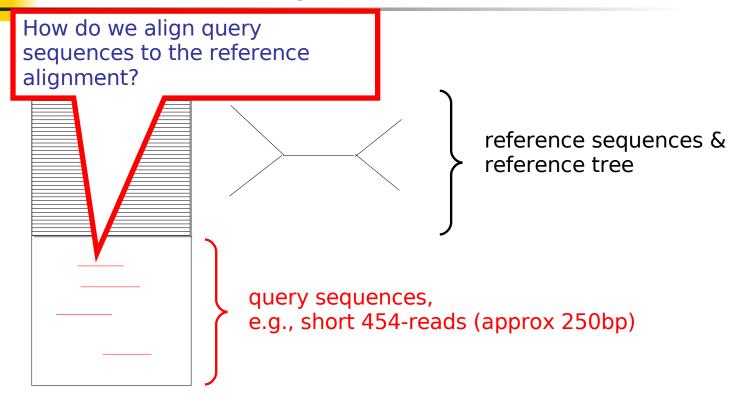


reference tree

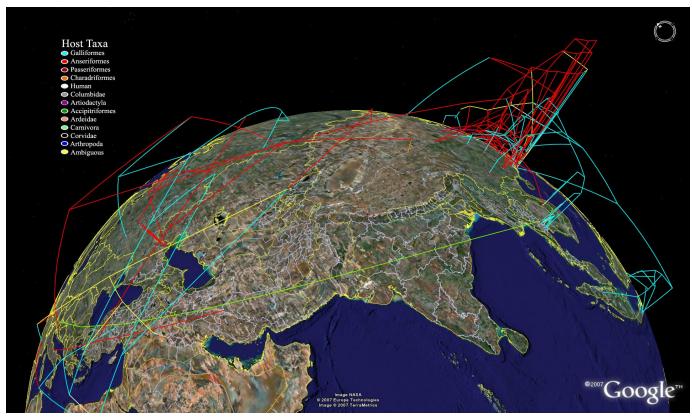
Phylogenetic Classification: Input Data



Phylogenetic Classification: Input Data



Spread of Avian Influenza 1996-2004

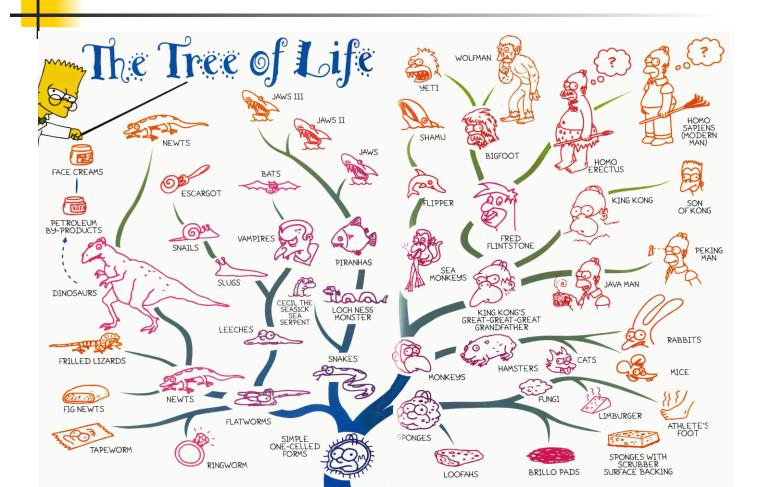


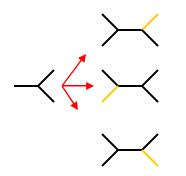
Courtesy of Dan Janies, Ohio State

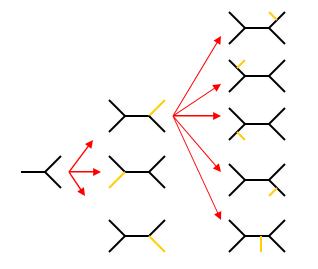
Challenges for Phyloinformatics

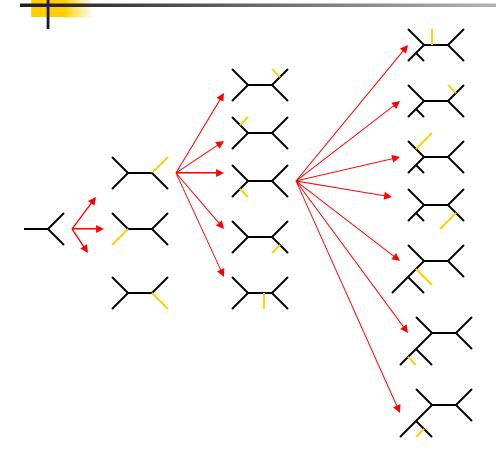
- Holy grail: "Tree of Life"
- Amount of available data grows at a higher rate than algorithms are getting faster
- Large multi-gene phylogenies
- Port codes to multi-core architectures
- What is a "good alignment" in a phylogenetic context?
- How do we assess confidence for our results?

The Tree of Life

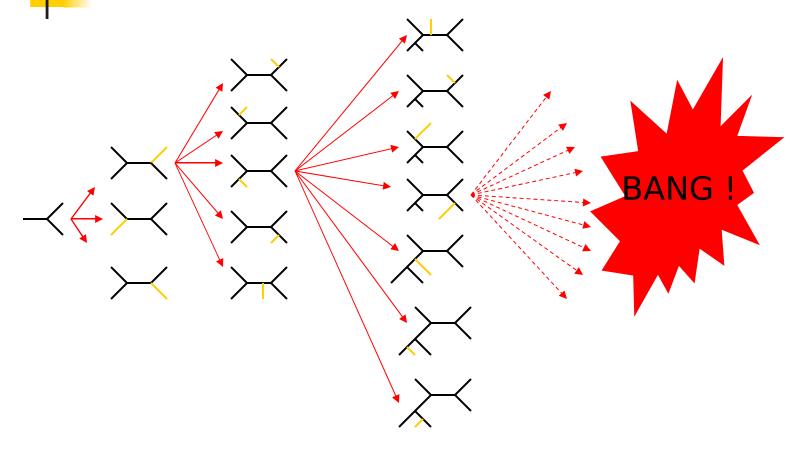








The number of trees explodes!



The Algorithmic Problem

 Number of potential trees grows exponentially

# Taxa	# Trees	
5	15	
10	2.027.025	
15	7.905.853.580.625	
50	2.84 * 10^76	

The Algorithmic Problem

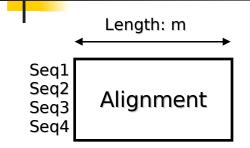
 Number of potential trees grows exponentially

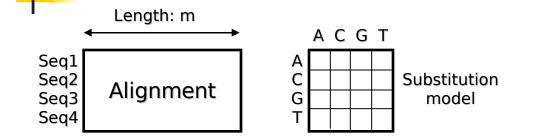
# Taxa	# Trees	
5	15	This is \approx the number of atoms in the universe 10^80
10	2.027.025	
15	7.905.853.580.6	
50	2.84 * 10^76	

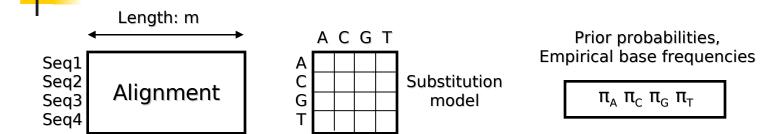
Outline

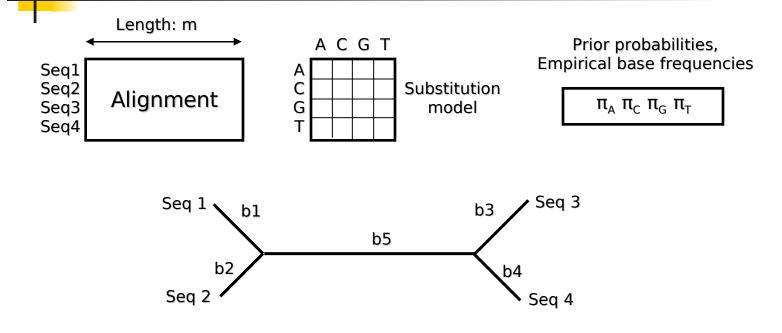
Introduction

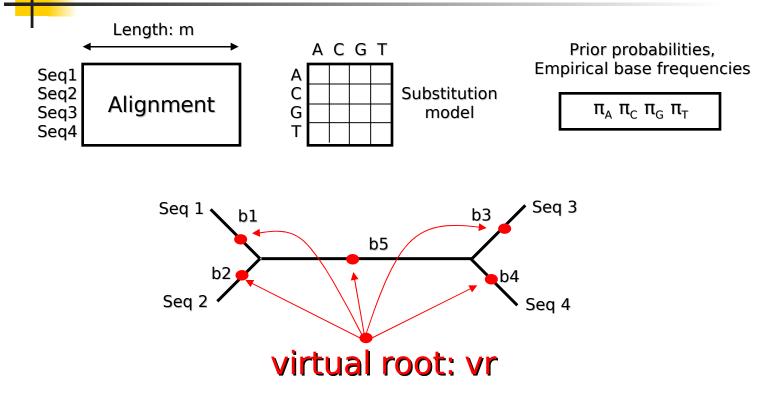
- Computation of Phylogenies
- Maximum Likelihood
- Web Servers
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges

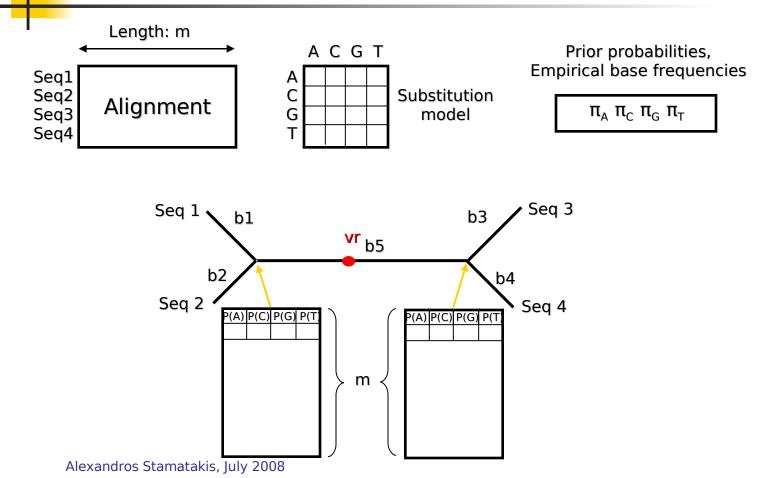


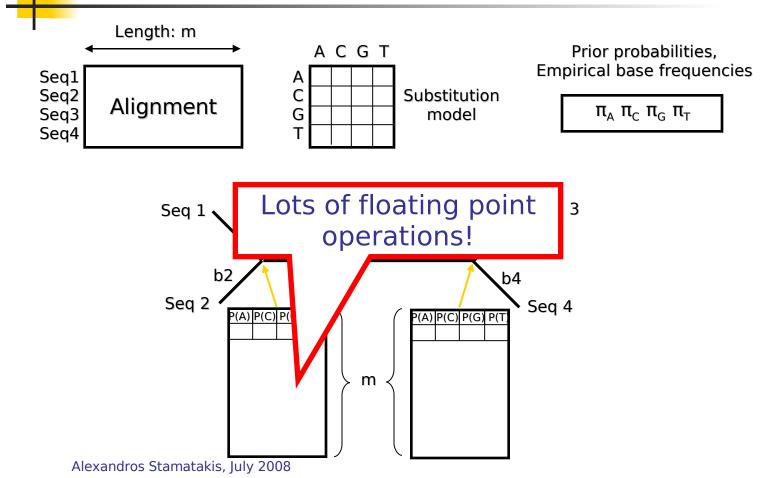


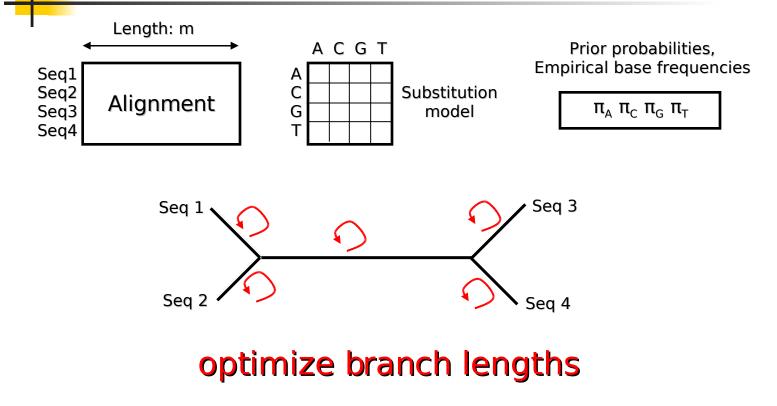




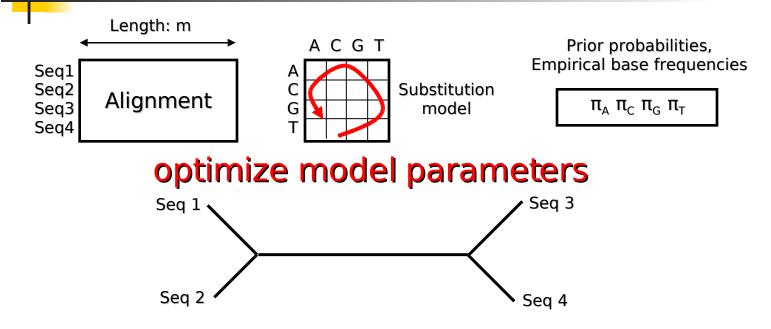








Maximum Likelihood



Maximum Likelihood

Goal: Obtain topology with maximum likelihood value

Problem I: Number of possible topologies is exponential in n

Problem II: Computation of likelihood function is expensive

Problem III: Probably high score accuracy required

Problem IV: High memory consumption

- Solution:
 - New Algorithms
 - New Models
 - High Performance Computing

Maximum Likelihood

Goal: Obtain topology with maximum likelihood value

Problem I: Number of possible topologies is exponential in n

Problem II: Computation of likelihood fu Problem III: Probably high score accura Problem IV: High memory consumption Solution:

- New Algorithms
- New Models
- High Performance Computing

Exemplary solutions: RAxML Randomized Axelerated Maximum Likelihood Open-Source Code

Outline

Introduction

- Computation of Phylogenies
- Maximum Likelihood
- Web Servers
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges

RAxML Usage & Web Servers

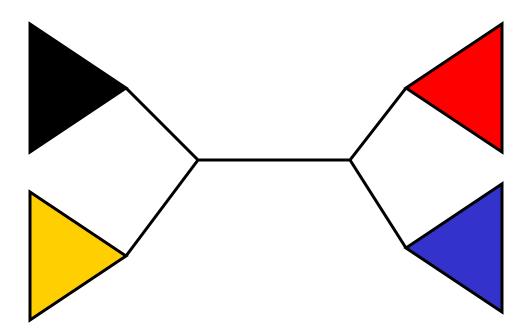
- Since August 2006 approx. 3,000 downloads from distinct IPs
 - USA: 44%
 - Germany: 11%
 - 58 other countries < 5%
- RAxML Web-Servers using Rapid Bootstrap Algorithm
 - San Diego Supercomputing Center
 - Since December 2007 over 3,000 jobs
 - http://phylobench.vital-it.ch/raxml-bb/
 - Vital-IT unit of Swiss Institute of Bioinformatics
 - → Since September 2007 over 8,000 jobs
 - http://8ball.sdsc.edu:8889/cipres-web/Bootstrap.do

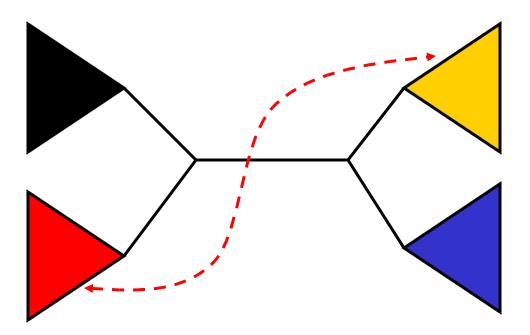
Outline

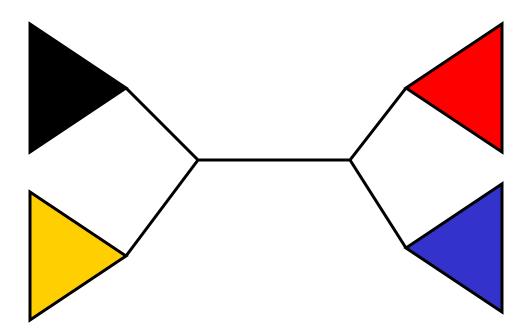
- Introduction
 - Computation of Phylogenies
 - Maximum Likelihood
 - Web Servers
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges

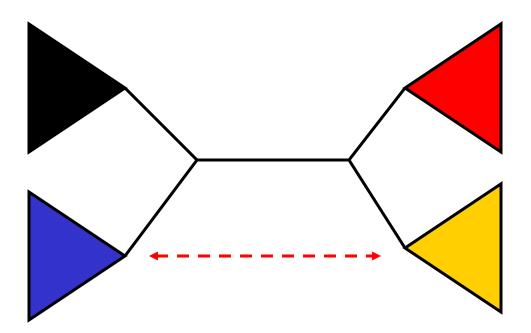
Basic Algorithm

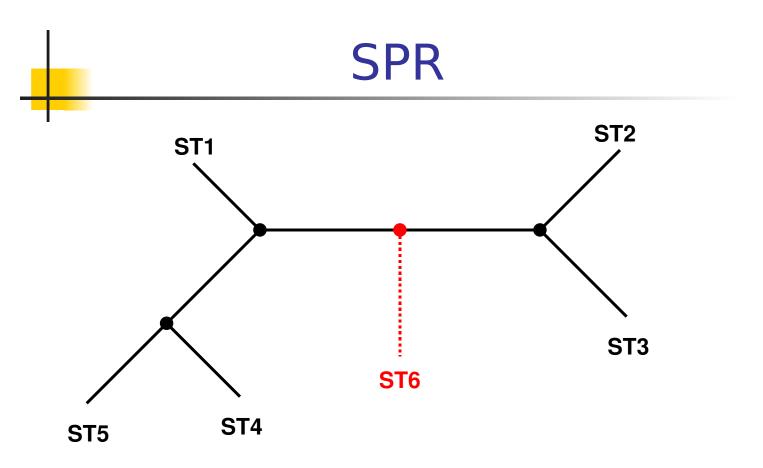
- Compute comprehensive starting tree
 - Complete Random Starting Tree (MrBayes, Garli)
 - Neighbor Joining (IQPNNI, PHYML)
 - Maximum Parsimony (RAxML)
- Optimize tree by application of standard topological alterations
 - NNI: Nearest Neighbor Interchange
 - TBR: Tree Bisection Reconnection
 - SPR: Subtree Pruning Re-Grafting (Subtree Rearrangements)
- Search Algorithms
 - Hill-Climbing
 - Simulated Annealing
 - Genetic Algorithms
 - Metropolis-Coupled Markov-Chain Monte-Carlo (MC³)

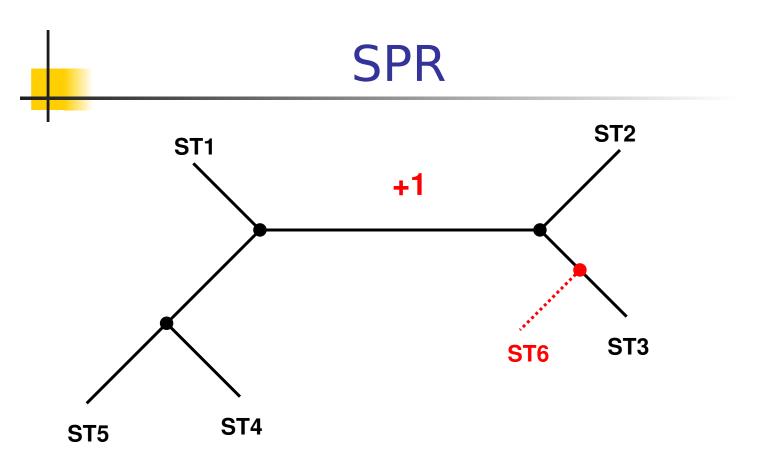


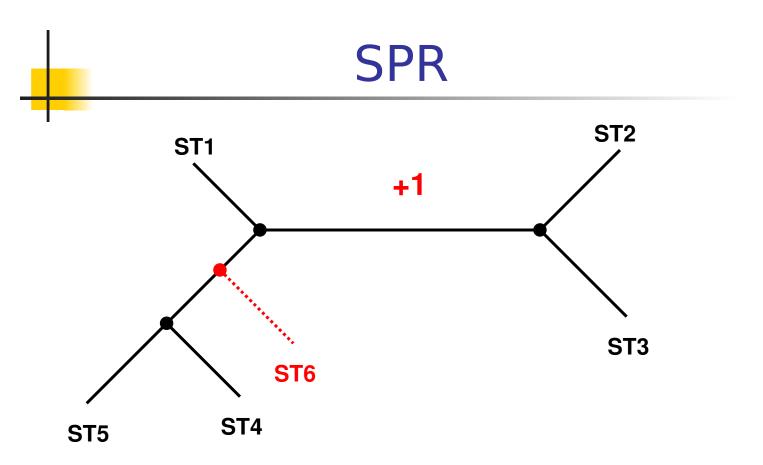


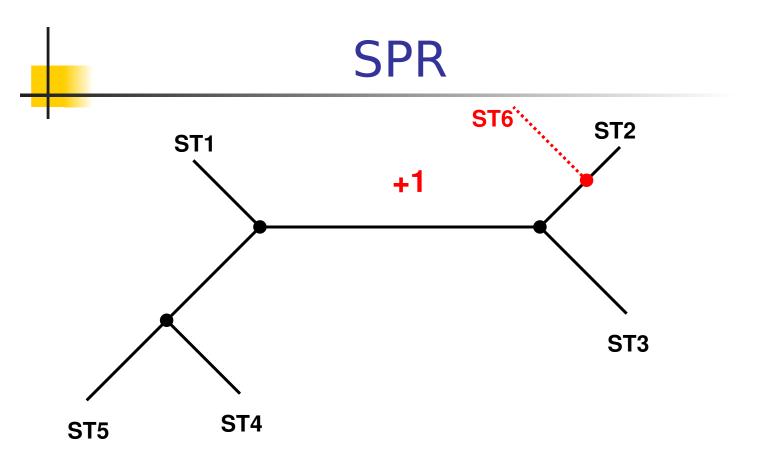


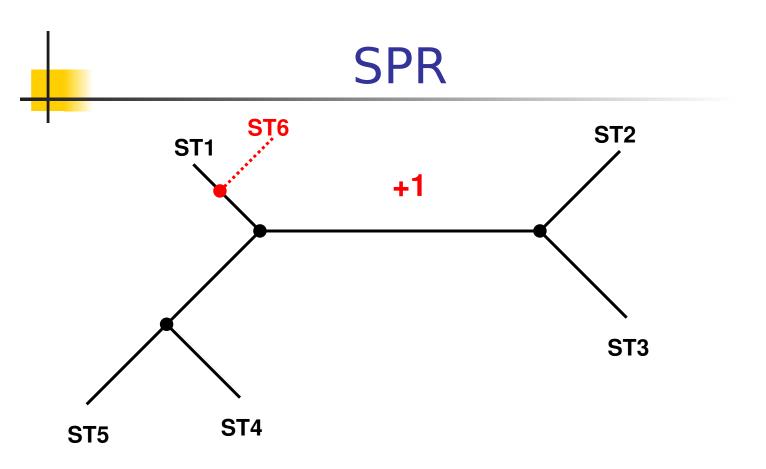


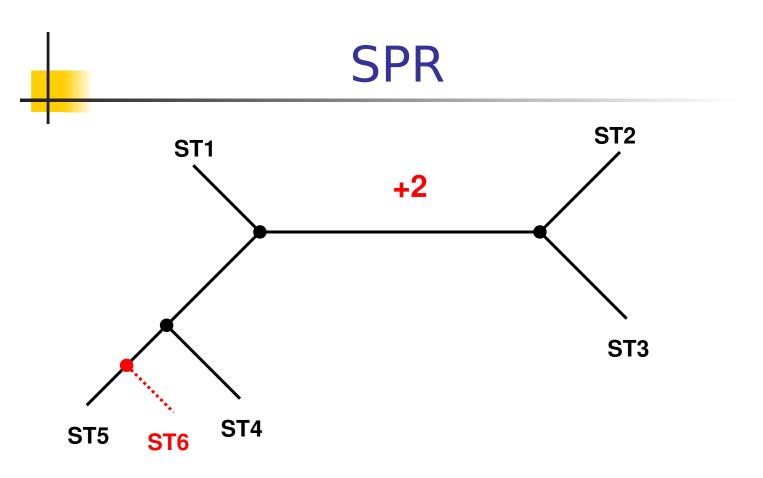


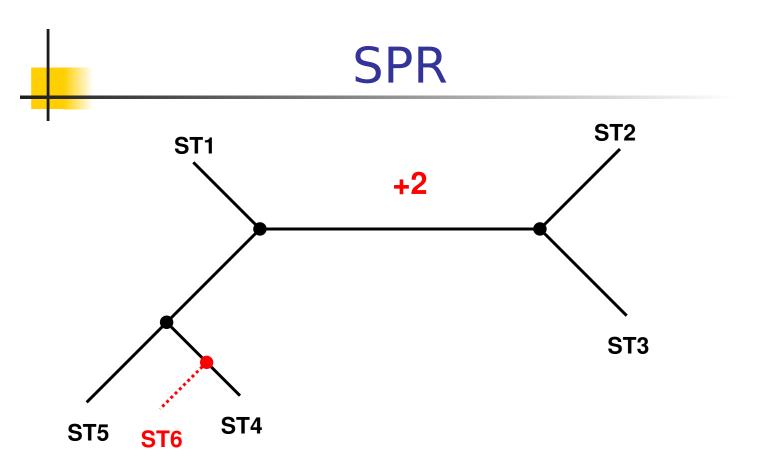


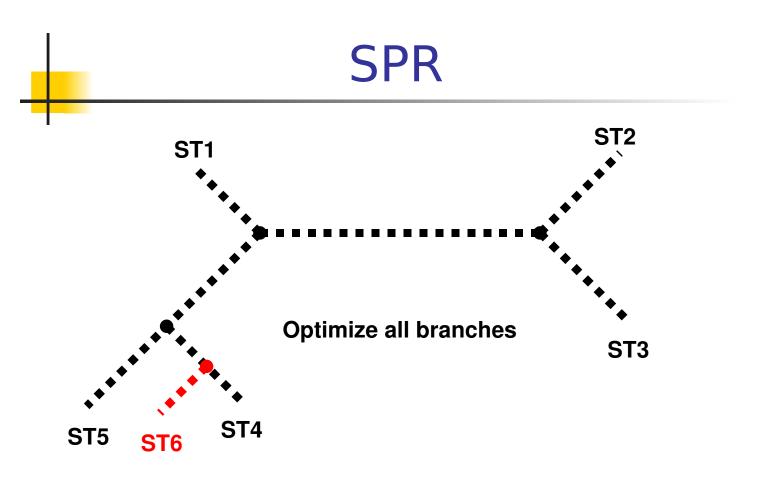


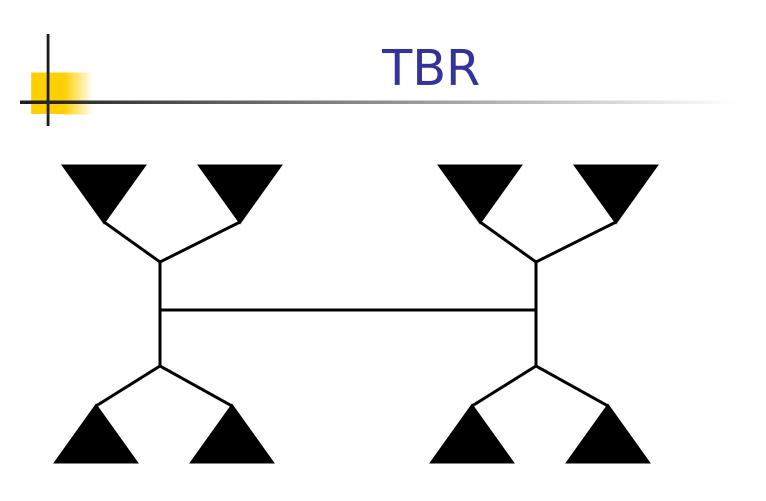


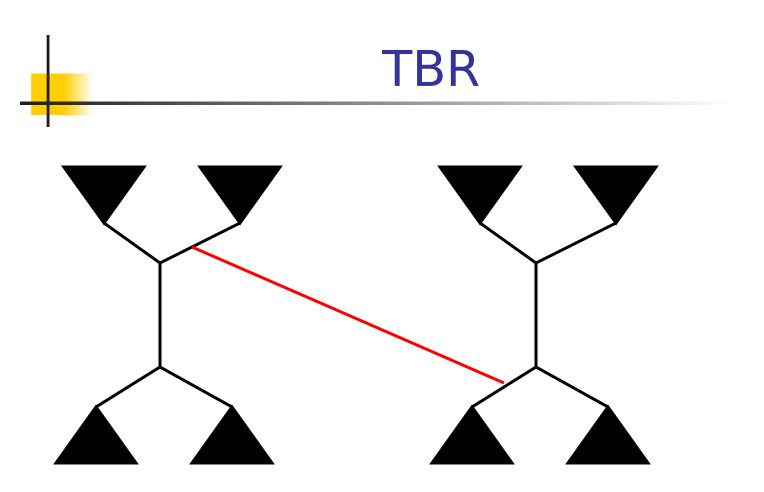




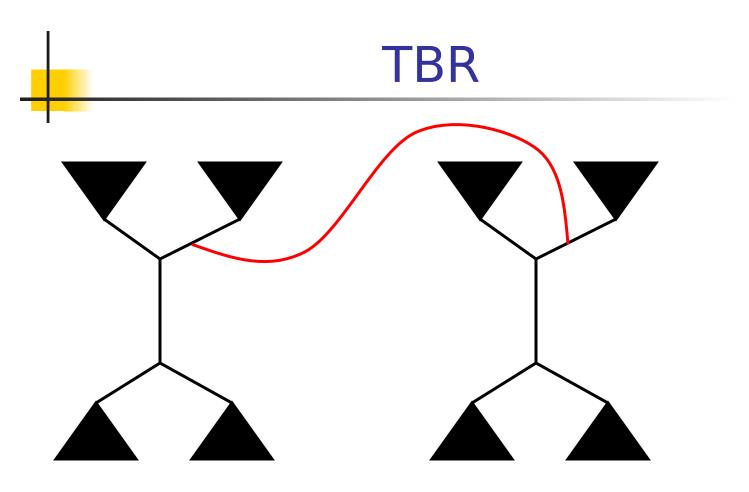


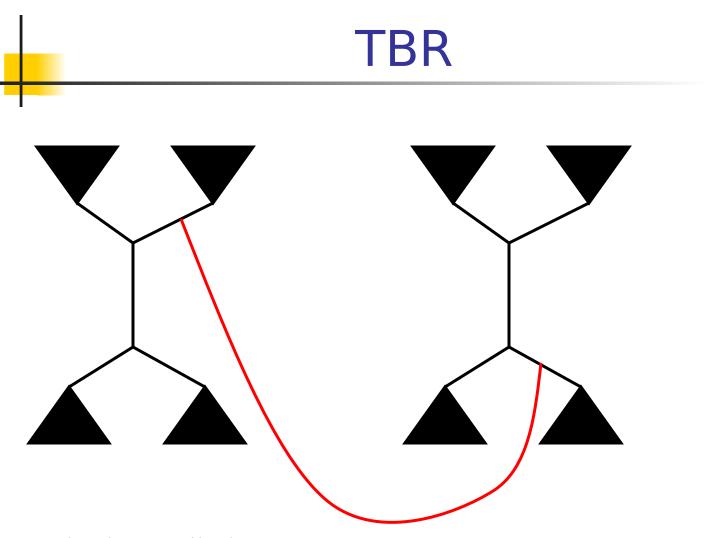


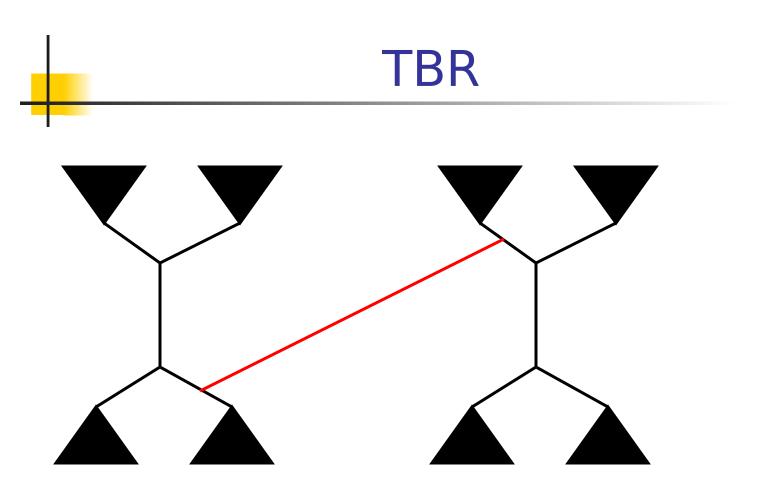








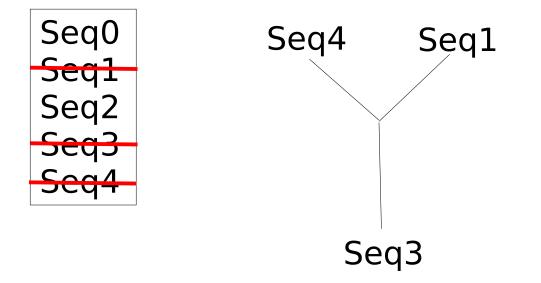


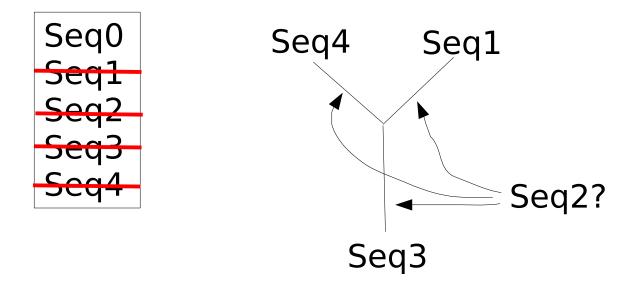


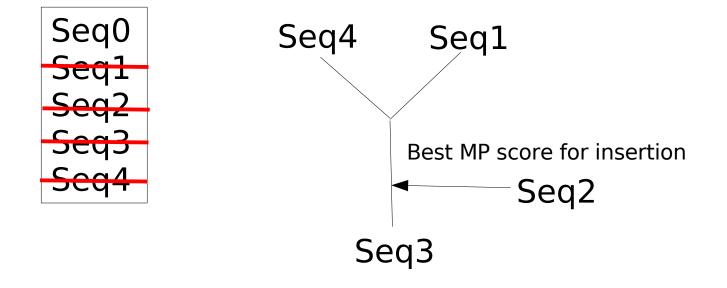
How does RAxML work?

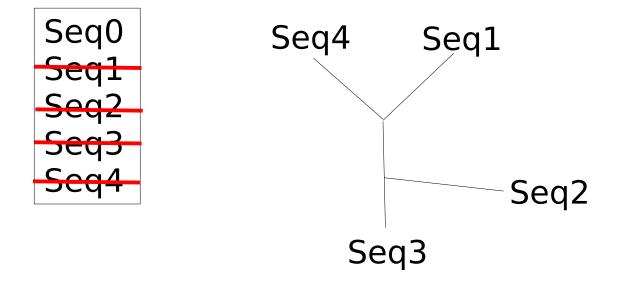
Compute randomized stepwise addition order Maximum Parsimony tree

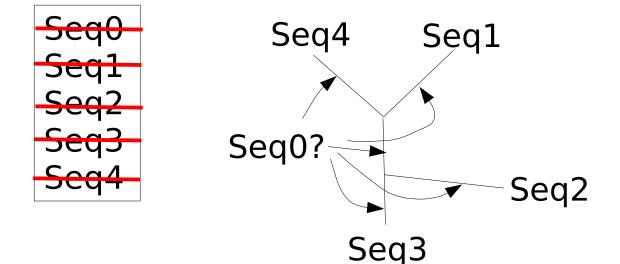
Seq0 Seq1 Seq2 Seq3 Seq4

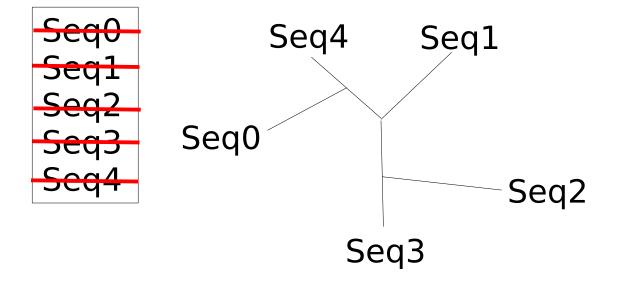


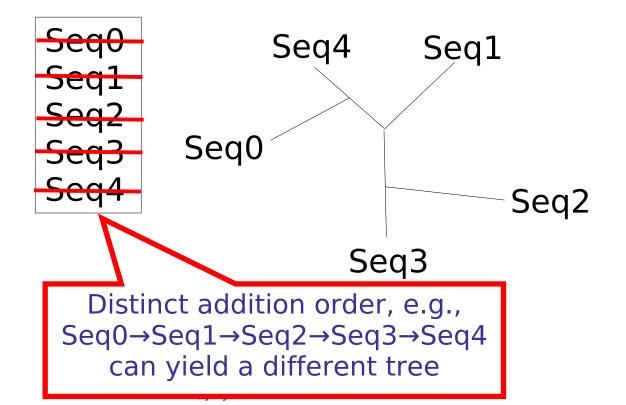










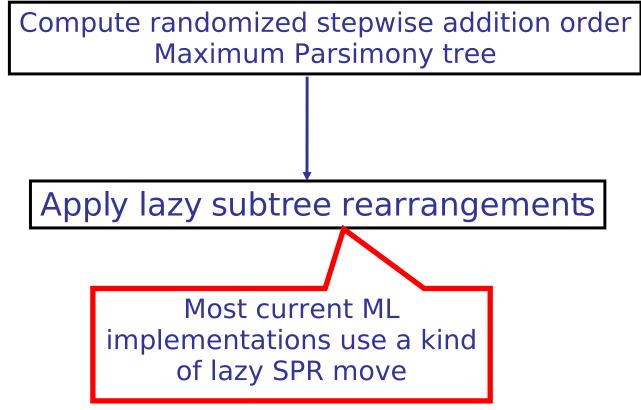


How does it work?

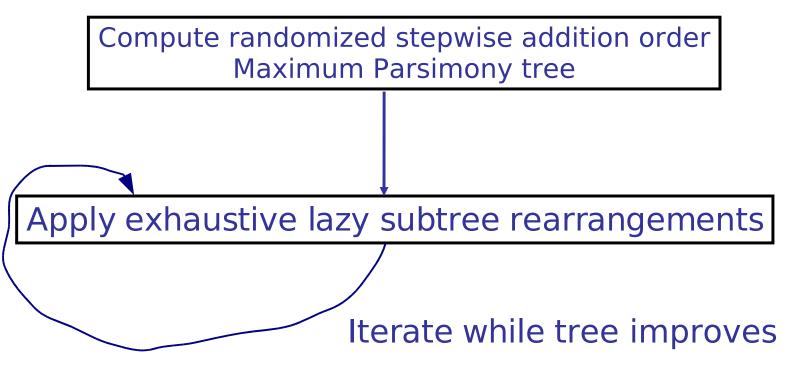
Compute randomized stepwise addition order Maximum Parsimony tree

Advantage of RAxML: search starts from distinct points in search space every time

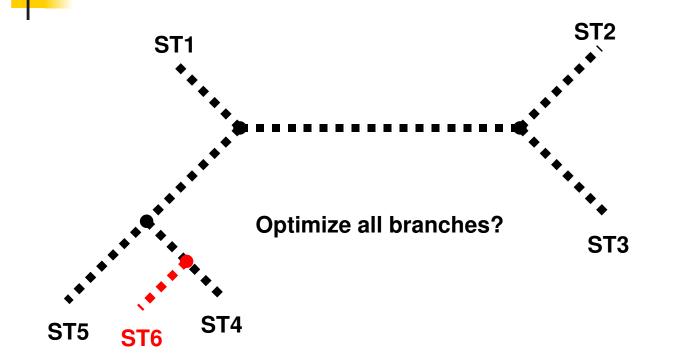
How does it work?

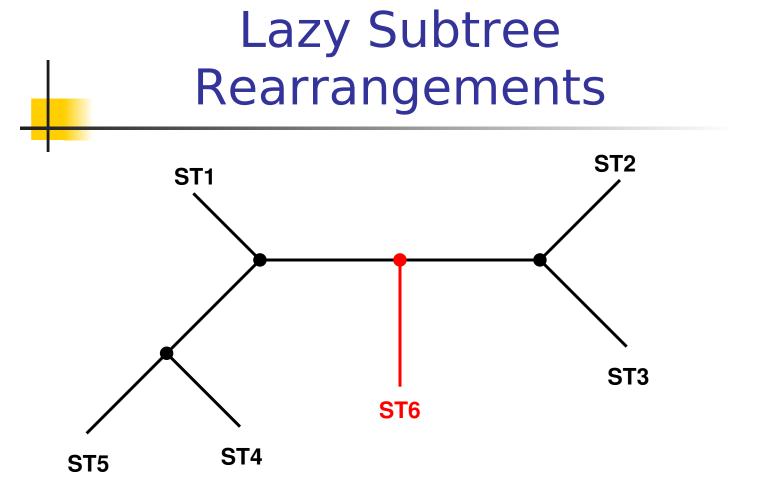


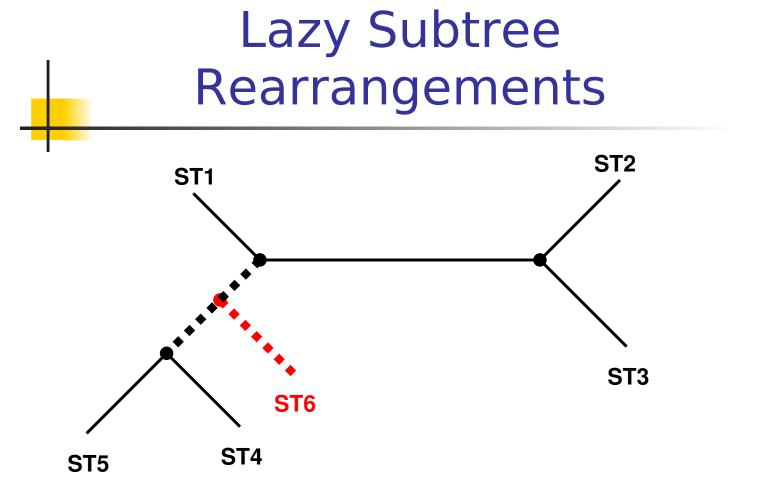
How does it work?



Subtree Rearrangements

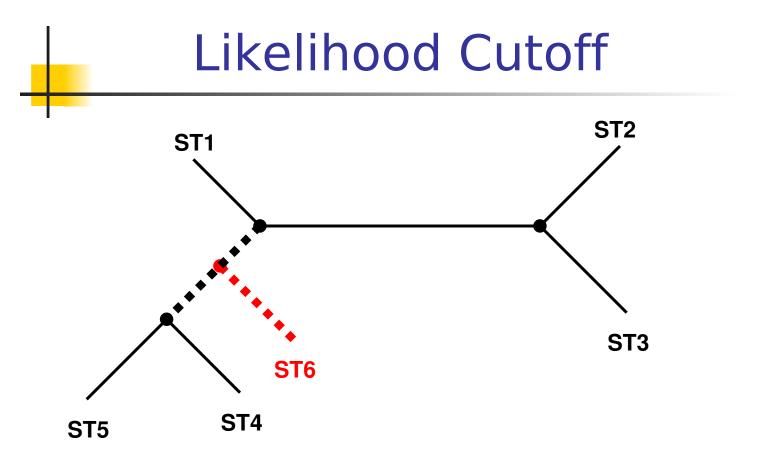


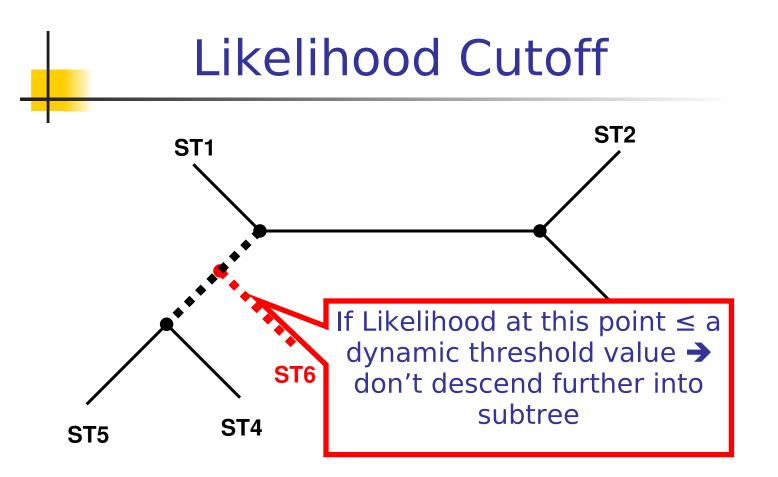


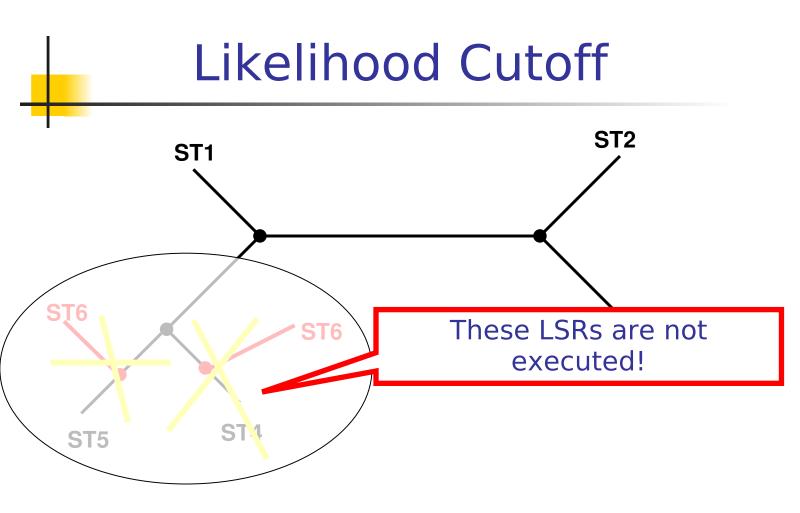


Why does this work?

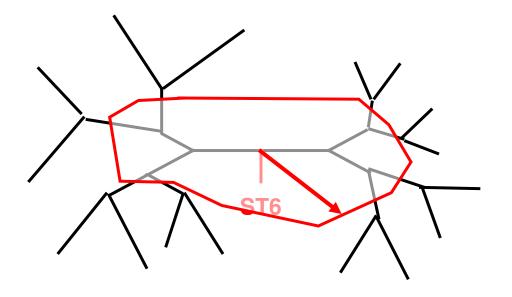
- Lazy subtree rearrangements:
 - Update less likelihood vectors → significantly faster
 - Allows for higher rearrangement settings → better trees
- Likelihood depends strongly on topology
- Fast exploration of large number of topologies
- Fast pre-scoring of topologies
- Store best 20 trees from each rearrangement cycle
- Full ML optimization of best 20 trees only
- Experimental results justify this mechanism







The Rearrangement Setting

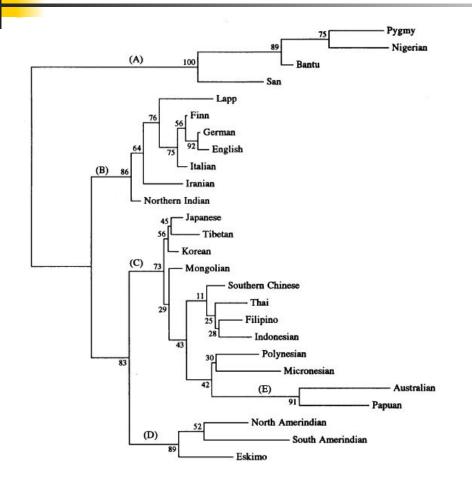


The Rearrangement Setting This setting has a significant impact on performance!

Confidence Values

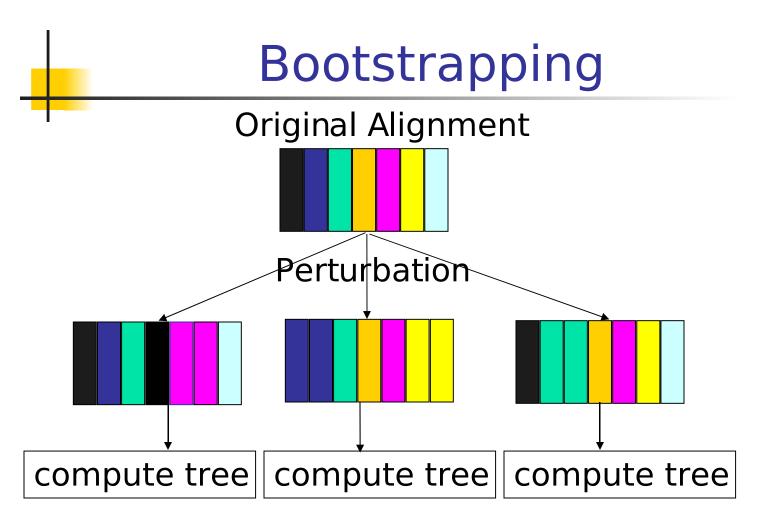
- Tree without node confidence values is mostly useless
- Problem:
 - Confidence value calculation is major computational obstacle
 - → We can compute large trees but not analyze them: compute ≠analyze !

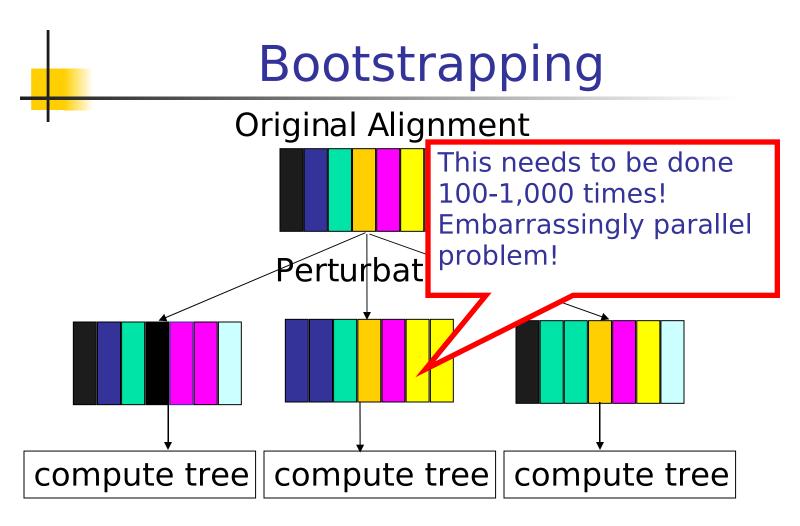
A Tree with Confidence Values

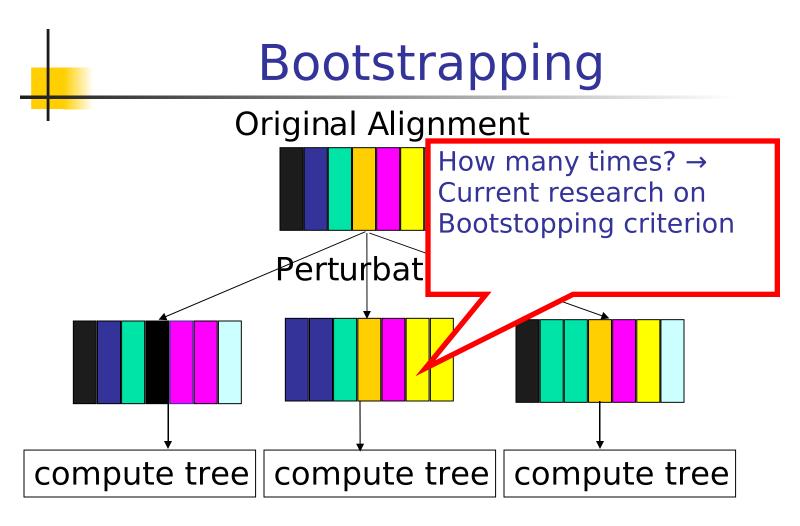


Confidence Values

- Tree without node confidence values is mostly useless
- Problem:
 - Confidence value calculation is major computational obstacle
 - → We can compute large trees but not analyze them: compute ≠analyze !
- Current Slow Methods
 - Sampling with Bayesian methods
 - Non-parametric Bootstrapping



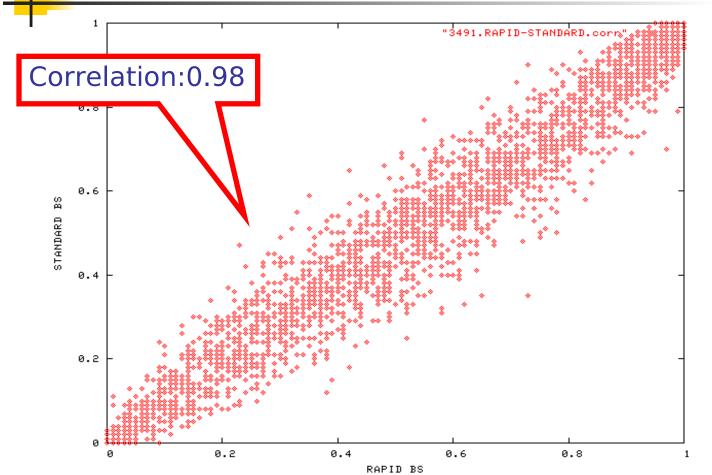




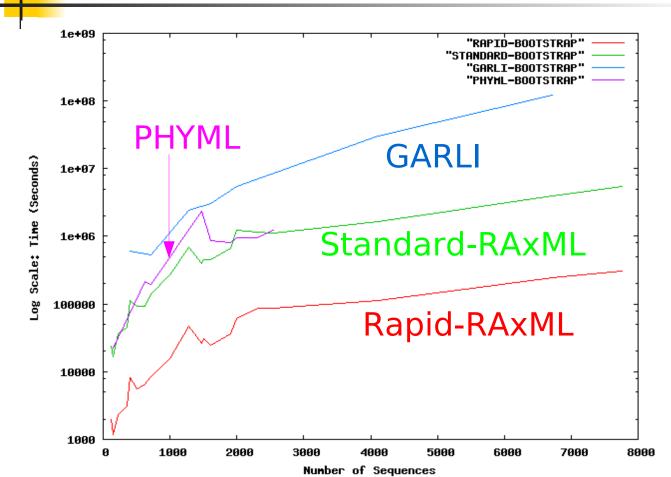
Rapid Bootstrapping Algorithm: Algorithmic Engineering

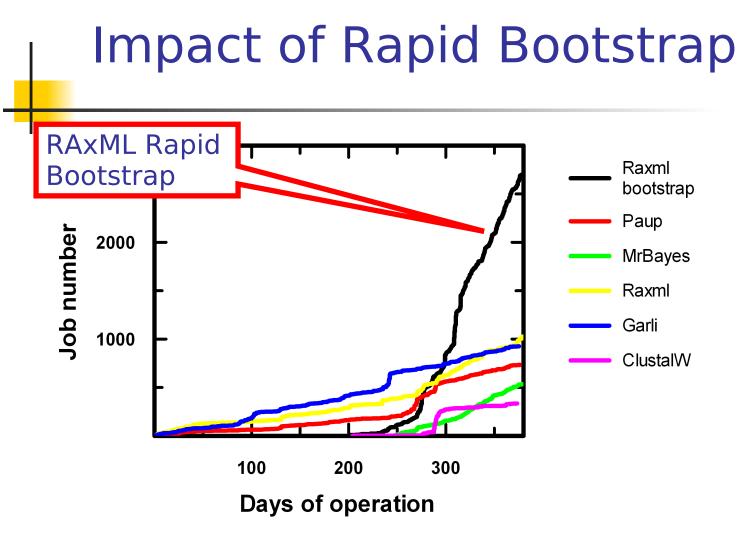
- Tested on 22 diverse (mammals, bacteria, archaea, grasses, fishes, plants, viral) real-world DNA/AA single-/multi-gene datasets containing 125-7,764 sequences
- Pearson correlation on best-scoring ML trees between RBS (Rapid BS) & SBS (Standard BS) support values 0.95-0.99 (except one dataset at 0.91), average 0.97
- Weighted topological distance < 6%, average 4%
- Program Acceleration: 8-20, average ≈ 15
 - Acceleration by one order of magnitude
 - → Full ML analysis (100BS + ML search) of datasets of up to 5,000 sequences within less than 5 days on your desktop!
 - Allows for a sufficiently large number of Bootstrap replicates
- Released in January 2008
- To be published in Systematic Biology soon

Relative Accuracy: Correlation on 3,500 rBCL sequences



Rapid Bootstrap Inference Times for 100 BS replicates





Courtesy of Mark Miller SDSC

Outline

- Introduction
 - Computation of Phylogenies
 - Maximum Likelihood
 - Web Servers
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges

Optimization of the Likelihood Function

- Likelihood functions (usually 3-4 functions) account for over 95% of total execution time
- Algorithmic Optimization
 - Detection of equal patterns and re-use of previously computed values
 - Special Function version for tip/tip and tip/inner node likelihood vectors
- Technical Optimization
 - Manual loop-unrolling
 - Consider pipeline efficiency
 - Replace x/y by x * 1/y etc
 - Cache efficiency
 - Individual ML implementation for each substitution model

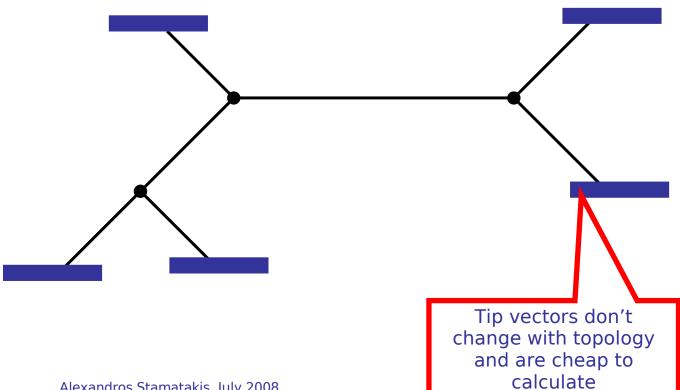
Expensive Likelihood Function: Consequences

- Likelihood Function is expensive
 - Try to reduce # of invocations by algorithmic means
 - Jse "cheaper" (in terms of FLOPs) criteria to pre-score alternative trees
 - Problem: These cheaper methods must correlate with the Likelihood function

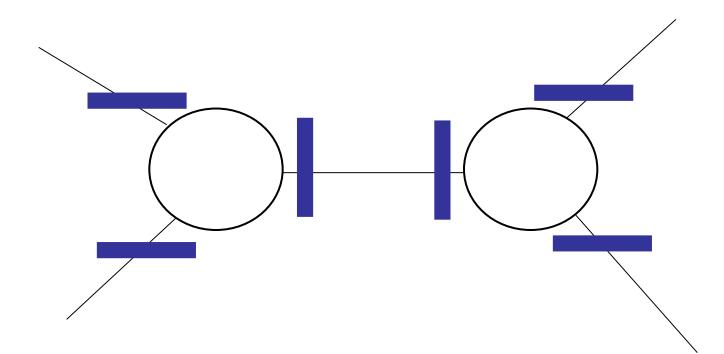
Model Selection

- Different statistical models of evolution
 - Complex models → many FLOPs & good accuracy
 - Simple models → less FLOPs & bad accuracy
- Trade-Off: speed versus accuracy
- Likelihood surface is smooth for complex models \rightarrow less local maxima

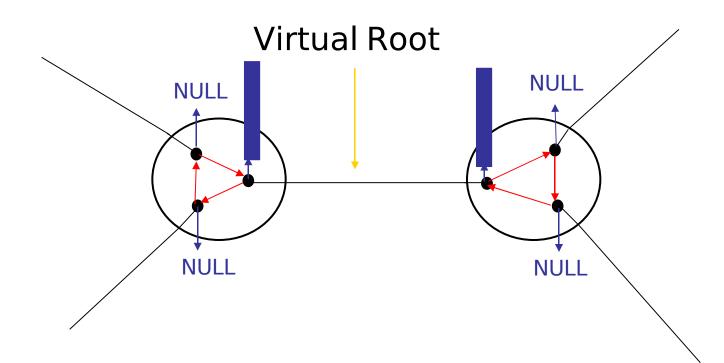
Memory Organization: Tip Vectors

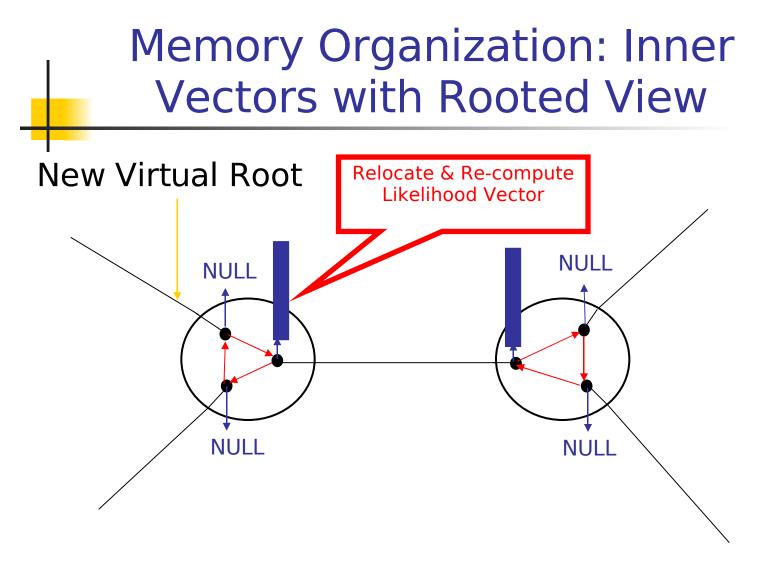


Memory Organization: Inner Vectors with Unrooted View

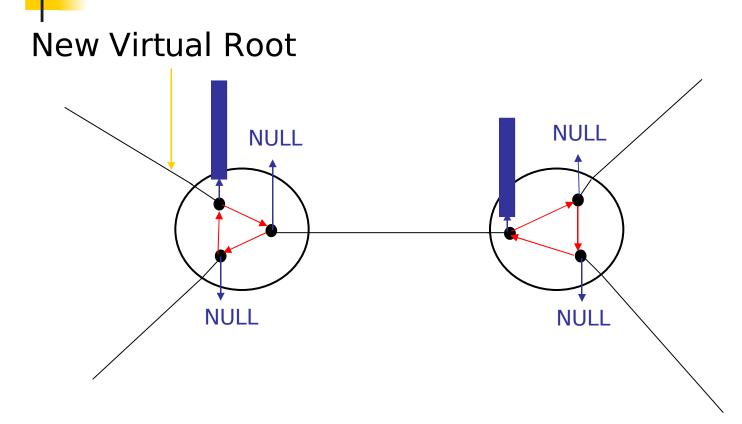


Memory Organization: Inner Vectors with Rooted View

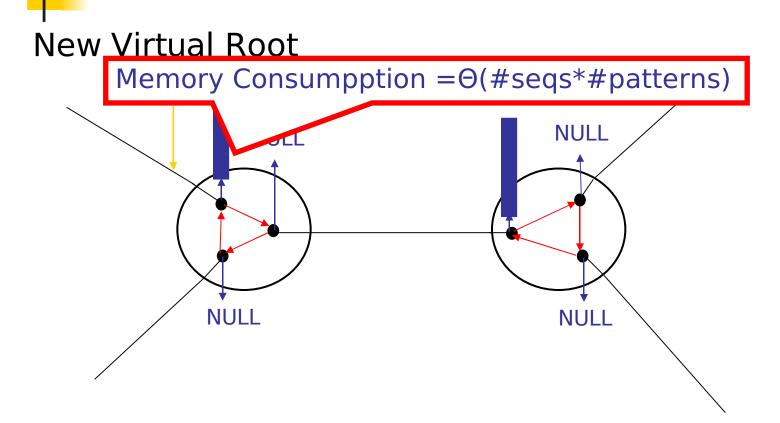




Memory Organization: Inner Vectors with Rooted View



Memory Organization: Inner Vectors with Rooted View

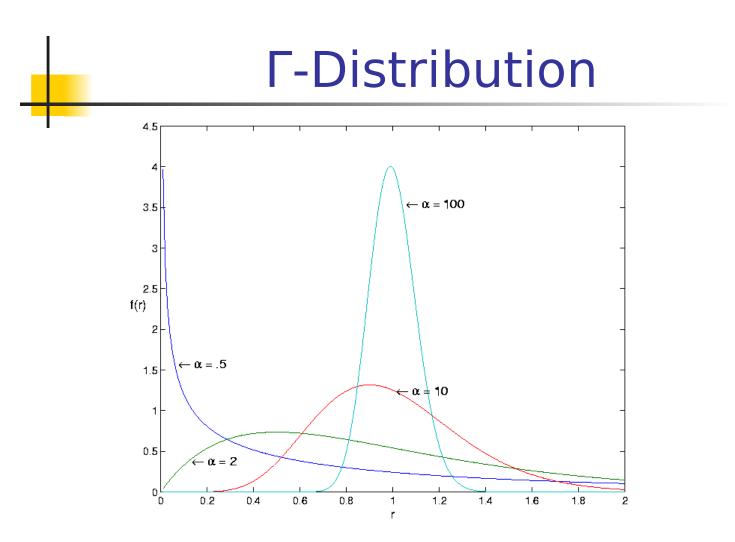


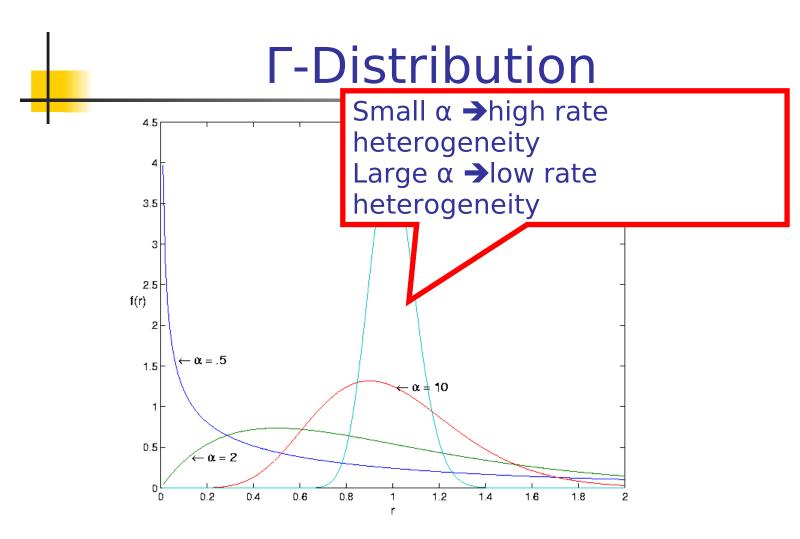
Outline

- Introduction
 - Computation of Phylogenies
 - Maximum Likelihood
 - Web Servers
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges

Rate Heterogeneity among Sites

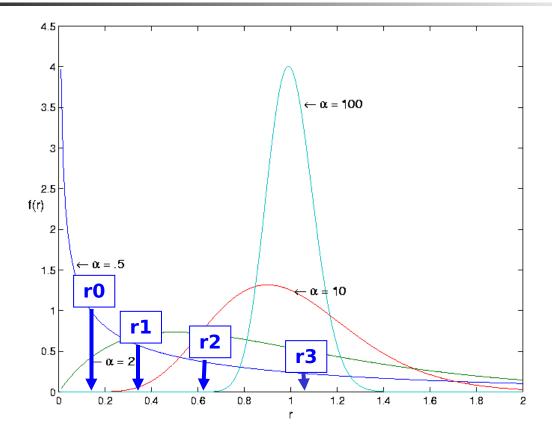
- Efficient approximation for the "gold standard" GTR+F model of rate heterogeneity among sites
 - execution time improvement: factor 4
 - memory footprint reduction: factor 4
 - returns equally good trees under GTR+Γ





Alexandros Stamatakis, July 2008

Discrete F-**Distribution**



Alexandros Stamatakis, July 2008

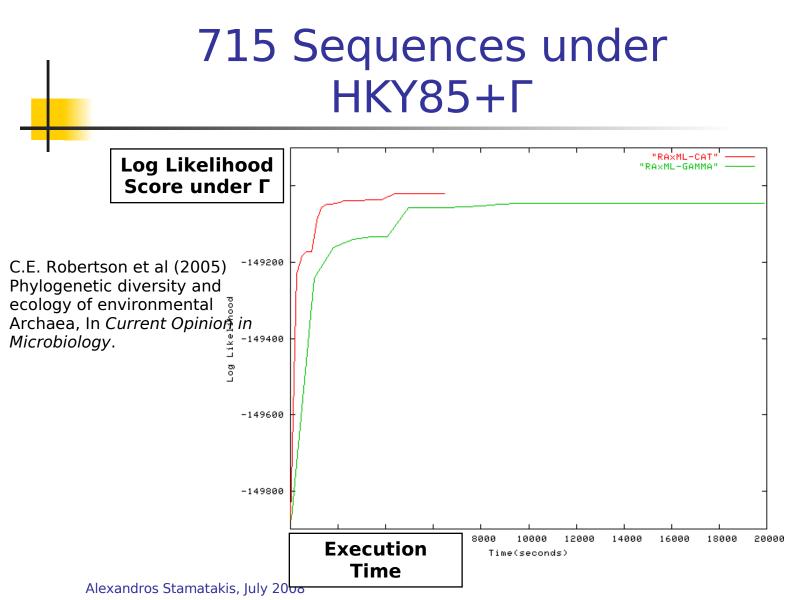
ML-Loops

CAT-LOOP

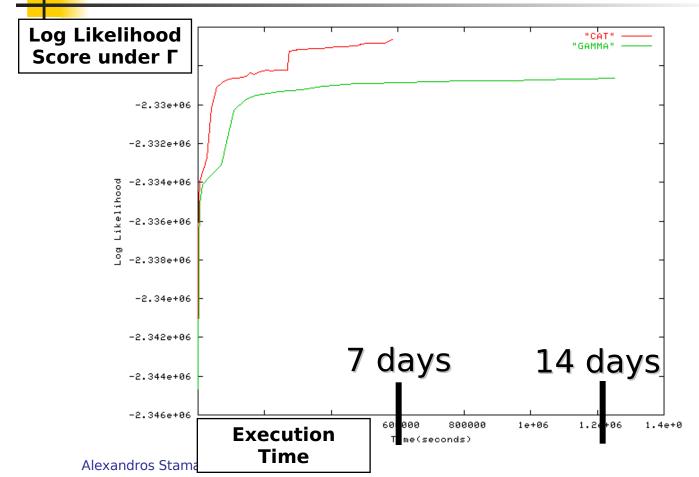
```
for(i = 0; i < m; i++)
{
    cat = category[i];
    r = rate[cat];
    p[i] = f(q[i], pq, r[i], pr, r);
}</pre>
```

Γ-LOOP

```
for(i = 0; i < m; i++)
{
    p[i].g0 = f(q[i], pq, r[i], pr, r0);
    p[i].g1 = f(q[i], pq, r[i], pr, r1);
    p[i].g2 = f(q[i], pq, r[i], pr, r2));
    p[i].g3 = f(q[i], pq, r[i], pr, r3));
}</pre>
```

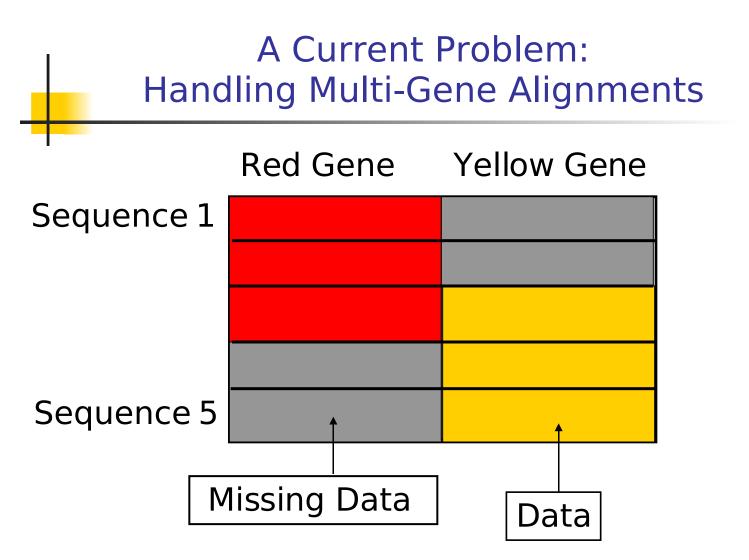


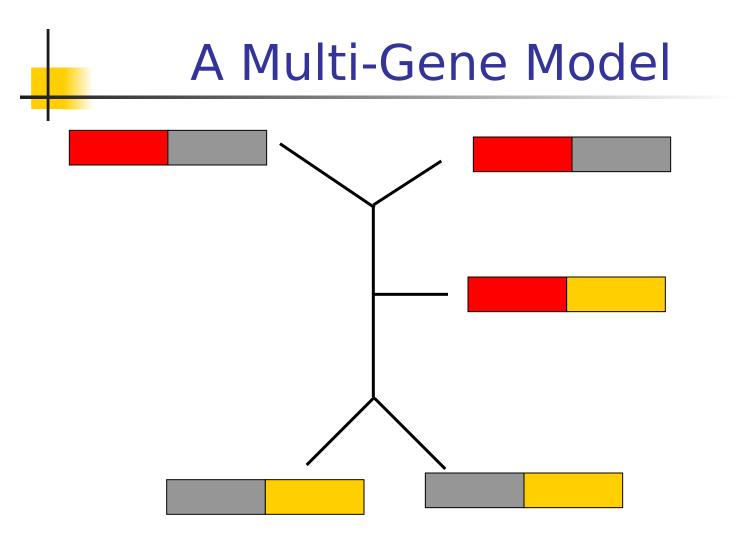
8,864 Bacteria under GTR+Γ and GTR+CAT



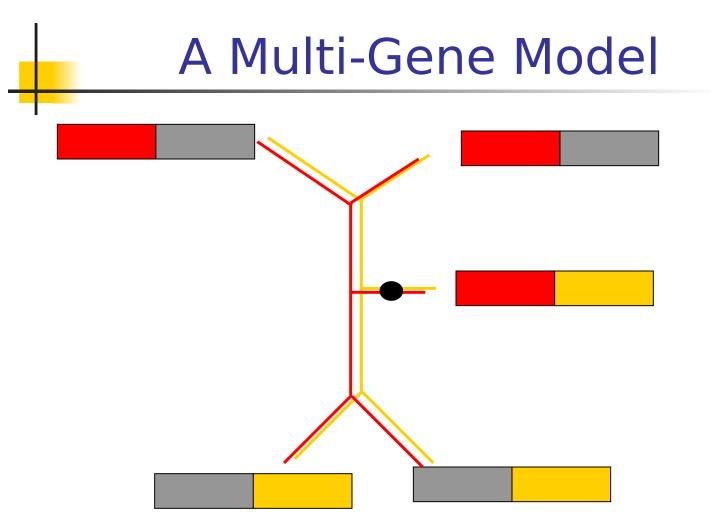
Current Challenge

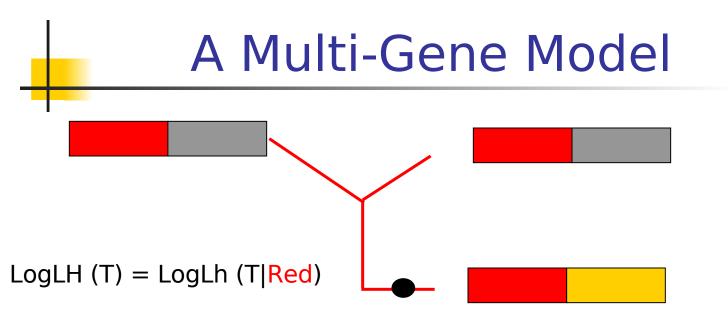
 Adapt likelihood function and data structures to increasingly common "gappy" multi-gene alignments



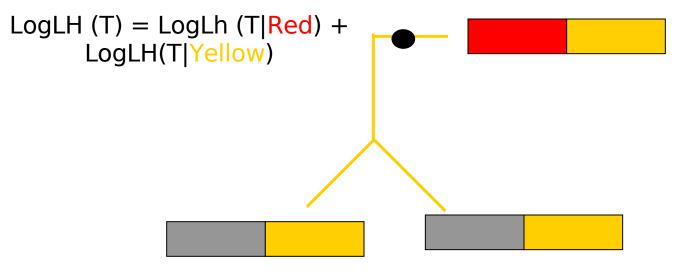








A Multi-Gene Model



Initial Results

2 datasets

- 400 sequences, 13,000 base-pairs (alignment columns), 11 genes, gappyness 70%
- 2,200 sequences, 51,000 base-pairs, 68 genes, gappyness 90% (memory footprint 9GB)
- Full tree traversal (AMD Opteron)
 - 400: 4 times faster
 - 2,200: 13 times faster
- Branch Length Optimization (AMD Opteron)
 - 400: 30 times faster
 - 2,200: 46 times faster
- Initial implementation does not exploit the potential memory footprint reduction

Outline

- Introduction
 - Computation of Phylogenies
 - Maximum Likelihood
 - Web Servers
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges

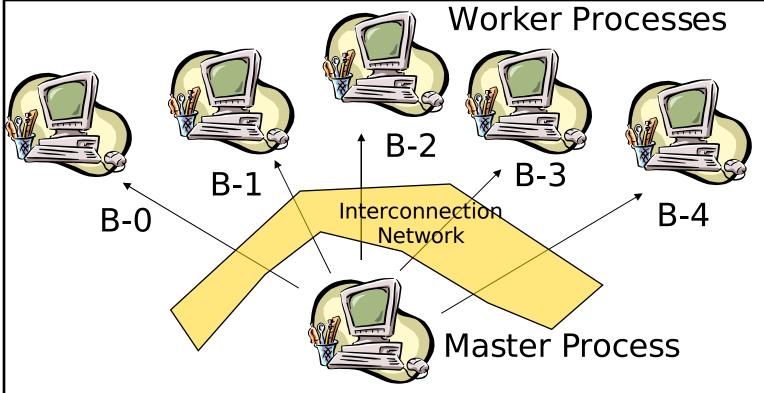
Levels of Parallelism

Embarrassing Parallelism

MPI, CORBA, Grid Technologies

Embarrassing Parallelism: MPI Version of RAxML

PC-CLUSTER



Levels of Parallelism

Embarrassing Parallelism

MPI, CORBA, Grid Technologies

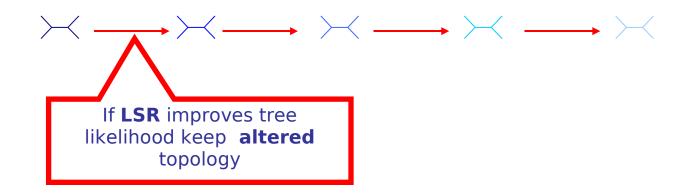
Inference Parallelism

MPI, algorithm-dependent

Inference Parallelism: Dependency Problem in RAxML

Apply a Lazy Subtree Rearrangement (**LSR**) to currently best tree and evaluate likelihood

Inference Parallelism: Dependency Problem in RAxML



Inference Parallelism: Dependency Problem in RAxML

- Each worker process evaluates the rearrangements for one subtree at a time
- One optimization cycle consists of 2 * #organisms LSRs
- Many improved topologies are encountered during one cycle
- Many sequential dependencies → hard to parallelize
- Use Non-determinism to solve problem

Levels of Parallelism

Embarrassing Parallelism

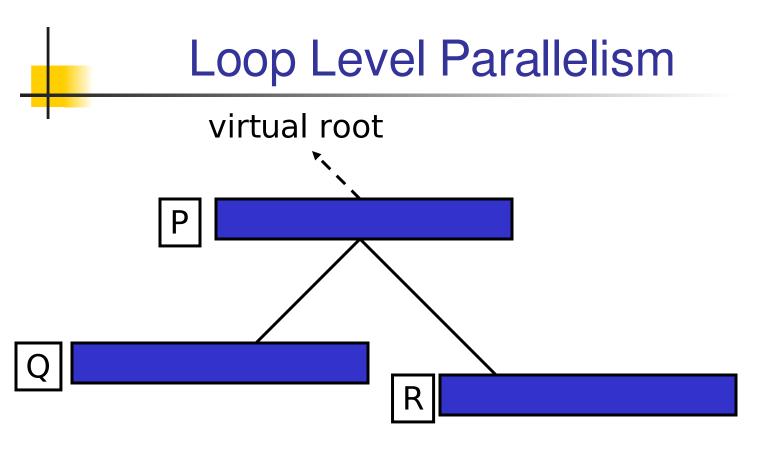
MPI, CORBA, Grid Technologies

Inference Parallelism

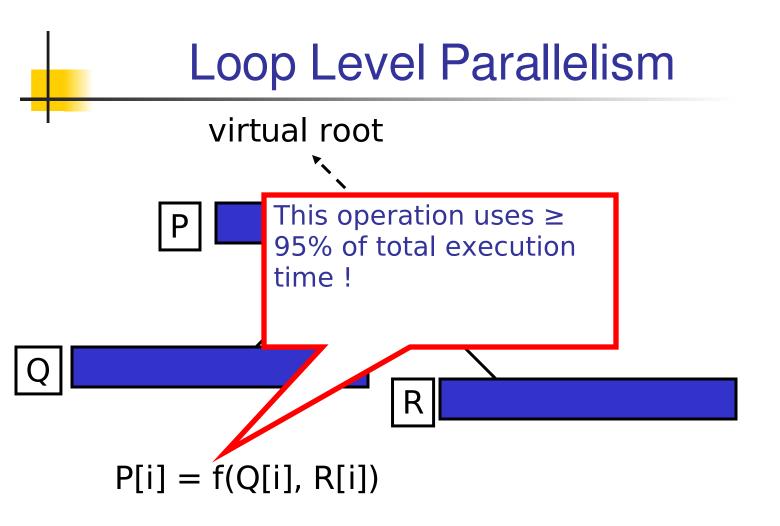
MPI, algorithm-dependent

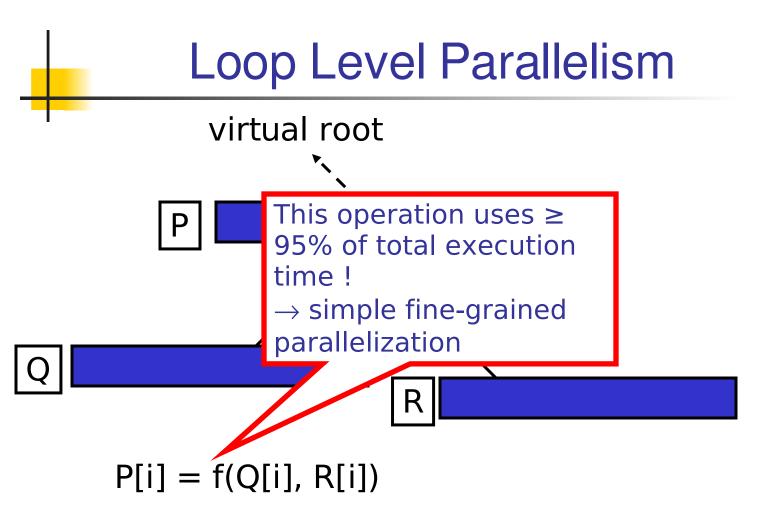
Loop-Level Parallelism

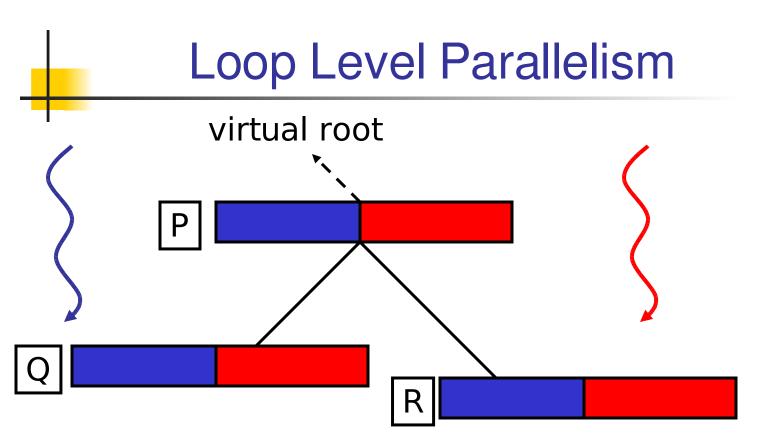
OpenMP, Pthreads, GPUs, IBM CELL (Playstation), IBM BlueGene, Clusters with fast Interconnect

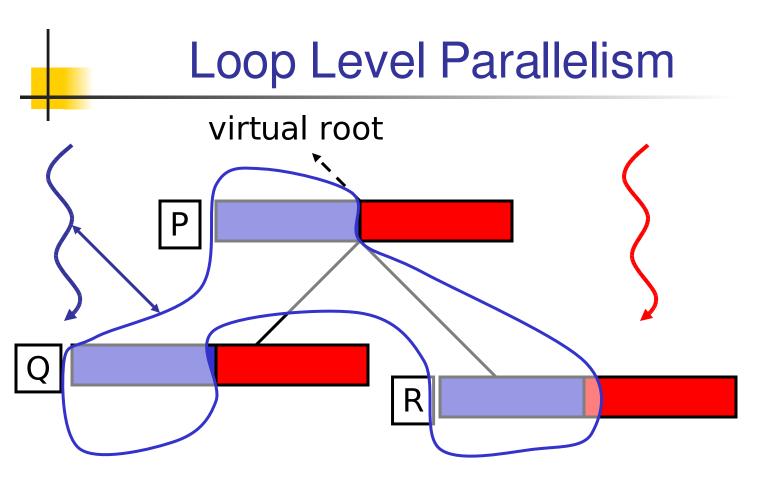


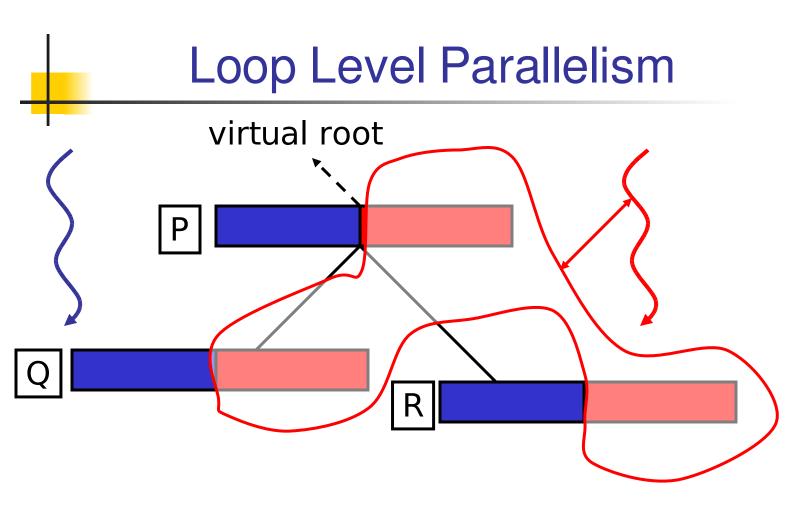
P[i] = f(Q[i], R[i])





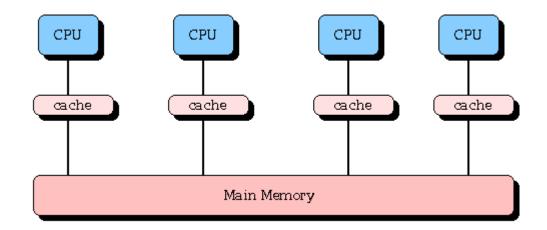




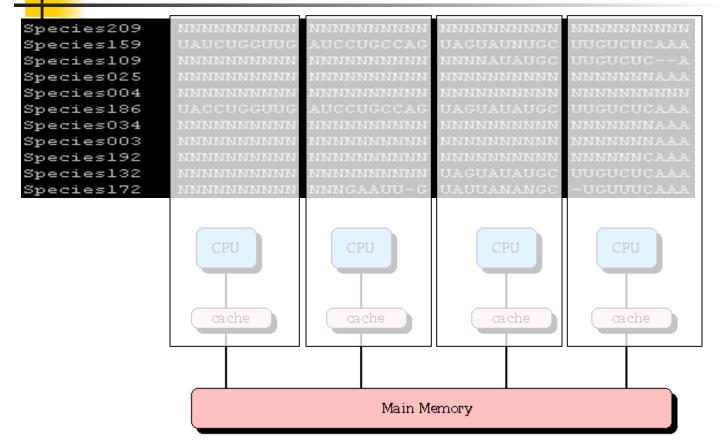


Loop-Level Parallelism

Species209	MINIMIMININININ	NNNNNNNNN	NININININININ	NININININININI
Species159	UAUCUGGUUG	AUCCUGCCAG	UAGUAUNUGC	UUGUCUCAAA
Species109	NINININININININI	NNNNNNNNN	NNNNAUAUGC	UUGUCUCA
Species025	NINININININININI	NININININININI	NININININININI	NNNNNNAAA
Species004	NININININININI	NINININININININ	NINININININININ	NININININININI
Species186	UACCUGGUUG	AUCCUGCCAG	UAGUAUAUGC	UUGUCUCAAA
Species034	NINININININININ	NINININININININ	NININININININI	NNNNNNAAA
Species003	NINININININININI	NININININININI	NININININININI	NNNNNNAAA
Species192	NINININININININ	NINININININININI	NINININININININ	NNNNNCAAA
Species132	NINININININININI	NININININININI	UAGUAUAUGC	UUGUCUCAAA
Species172	NININININININI	NNNGAAUU-G	UAUUANANGC	-UGUUUCAAA



Loop-Level Parallelism



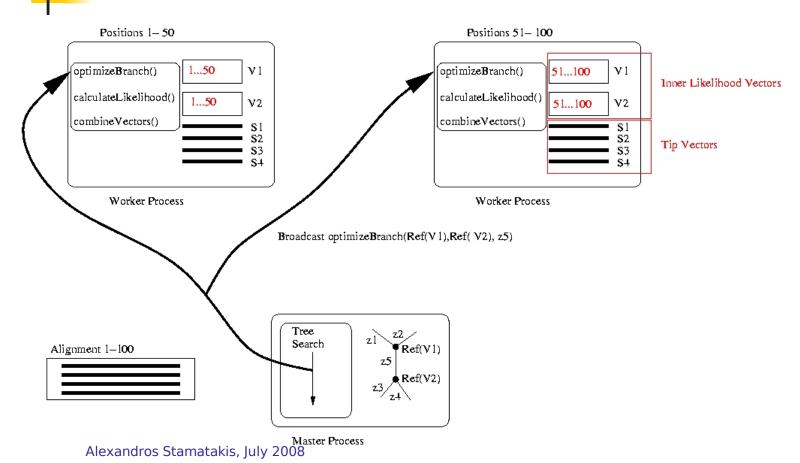
HPC for ML & Bayesian Phylogenetic Inference

- Proof of Concept & Programming Techniques:
 - RAxML on a Graphics Processing Unit (completed)
 - RAxML on the IBM CELL & Playstation III (completed)
- Production Level Parallelizations:
 - RAxML with OpenMP (completed)
 - RAxML with MPI (completed)
 - RAxML on IBM BlueGene (in progress)
 - RAxML with Pthreads on Multi-Core Architectures (in progress)

Orchestrating the Phylogenetic Likelihood Function on Massively Parallel Machines

- IBM BlueGene/L and BlueGene/P systems dominate the top 500 list www.top500.org
 - 1,024 slow CPUs per rack
 - 512 MB or 1 GB of memory per node
 - High performance interconnect
- Challenges:
 - Distribute tree data structure among CPUs
 - Exploit fast collective communication network

Loop-Level Parallelism on BlueGene



Orchestrating the Phylogenetic Likelihood Function on Current Parallel Architectures

- Handle long memory-intensive datasets
- Processes/threads on cores compete for memory access bandwidth → memory gap problem
- Which is the best parallel programming paradigm/language for ML in terms of
 - Efficiency
 - Usability
 - Portability
 - Programming overhead
 - Program Complexity
- Which is the best multi-core architecture for ML (RAxML)?
- Integrate all concepts into one piece of code that scales
 - From 2 cores up to 1,024 CPUs
 - On shared & distributed memory machines

Programming Paradigms MPI versus OpenMP versus Pthreads

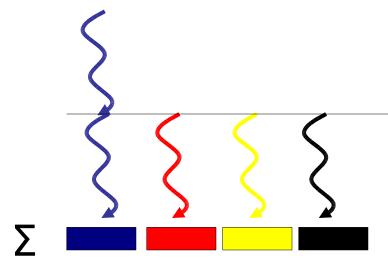
MPI

- low level distributed memory programming
- significant programming overhead (2 weeks)
- distributed memory model → no joint view of memory space by all processors
- not easy to compile & install → sys admin required
- OpenMP
 - high level shared memory programming
 - low programming overhead
 - no control over the machine/parallelization details
 - numerical & performance problems due to lack of control
 - not easy to compile & install → specialized compiler required
- Pthreads
 - low level shared memory programming library
 - significant programming overhead (4 weeks)
 - full control over the machine
 - easy to compile → it is starting to get used

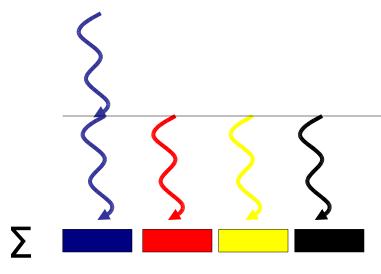
Problems with OpenMP

- Special OpenMP-enabled compiler required → non-expert users will not exploit parallelism
- Reduction operations (see next slide) non-deterministic → numerical operations that should yield identical results yield different results
- Fork-Join model → synchronization required for updating every single likelihood vector
- What does the OpenMP compiler (Intel icc) do?
 - We don't know
 - It automatically fixed a bug and yielded very bad performance
- OpenMP is a little bit like Windows: one does not know what it does and can not influence what is happening
- But it took only 5 hours to parallelize MrBayes from scratch

OpenMP Reduction Operation



OpenMP Reduction Operation



LnL = LnL(t0) + LnL(t1) + LnL(t2) + LnL(t3) add per-thread sums

OpenMP Reduction Operation

Order of these additions nondeterministic in OpenMP, i.e., any permutation possible → numerical bugs on long datasets & many cores

LnL= LnL(t0) + LnL(t1) + LnL(t2) + LnL(t3)

Thread Pinning

- Thread pinning/mapping to cores has significant impact on performance if less threads are executed than cores are available!
- This happens if 2 threads are started on the same socket instead of different ones
- Can cause up to 50% run time differences among various mappings of, e.g., 4 threads onto 8 cores
- We compute speedups based on optimal assignments for each configuration

Test Systems

- IBM BlueGene/L distributed memory
 - 1,024 CPUs
- SGI Altix 4700 (LRZ Munich) shared memory
 - Total 9,728 cores, we used up to 256 cores
 - 39 Terabyte of main memory
- Infiniband Cluster
 - 32 4-way SMPs (single cores)
 - Infiniband interconnect (low latency)
- AMD Barcelona
 - 2-way quad core (8 cores)
- Intel Clovertown
 - 2-way quad-core (8 cores)
- Sun x4600
- 8-way dual core (16 cores)
 Alexandros Stamatakis, July 2008

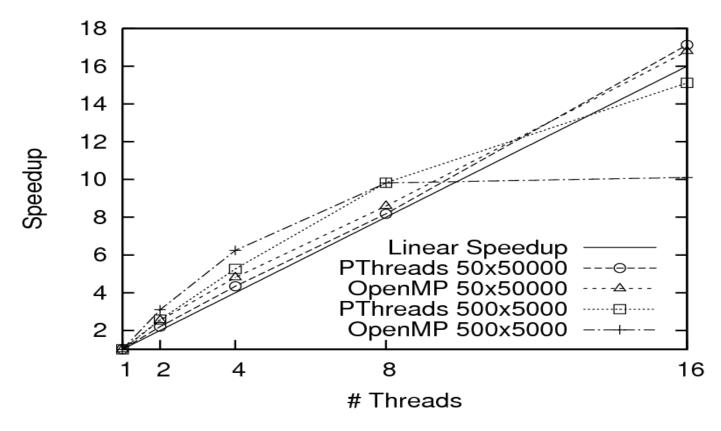
Test Datasets

- 50_5000, 50 taxa, 5,000 bp, (3,066 patterns)
- 50_50000, 50 taxa, 50,000 bp (23,285 patterns)
- 50_500000, 50 taxa, 500,000 bp (216,025 patterns)
- 250_500000, 250 taxa, 500,000 bp (403,581 patterns)
- 500_5000, 500 taxa, 5,000 bp (3,829 patterns)

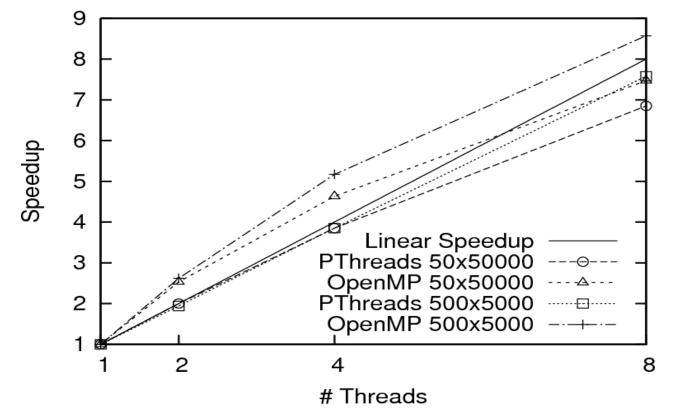
Test Datasets

- 50_5000, 50 taxa, 5,000 bp, (3,066 patterns)
- 50_50000, 50 taxa, 50,000 bp (23,285)
- patterns)
 50_50000 about 100 times less favourable patterns)
- 250_500000, 250 taxa, 500,000 bp (403,581 patterns)
- 500_5000, 500 taxa, 5,000 bp (3,829 patterns)

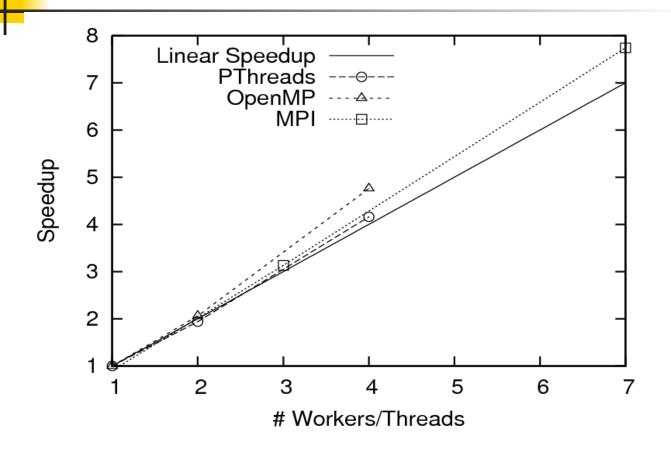
Sun x4600: OpenMP versus Pthreads



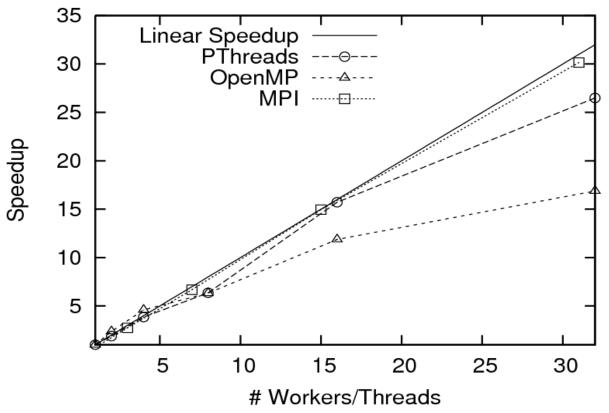
AMD Barcelona: OpenMP versus Pthreads



Infiniband Cluster d50_50000 MPI vs. Pthreads vs. OpenMP

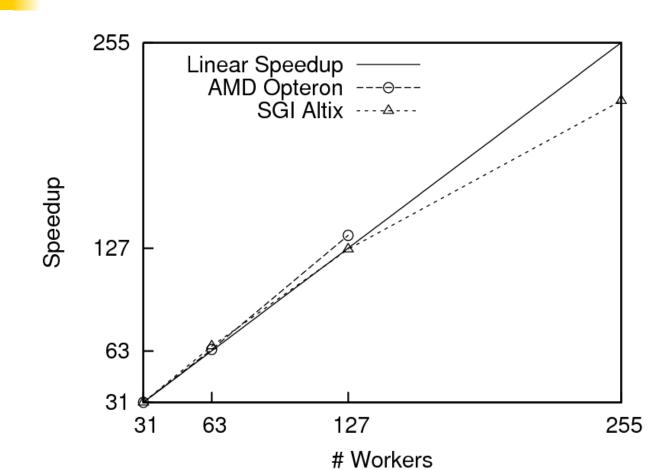


SGI Altix 4700 d50_50000 MPI vs. Pthreads vs. OpenMP

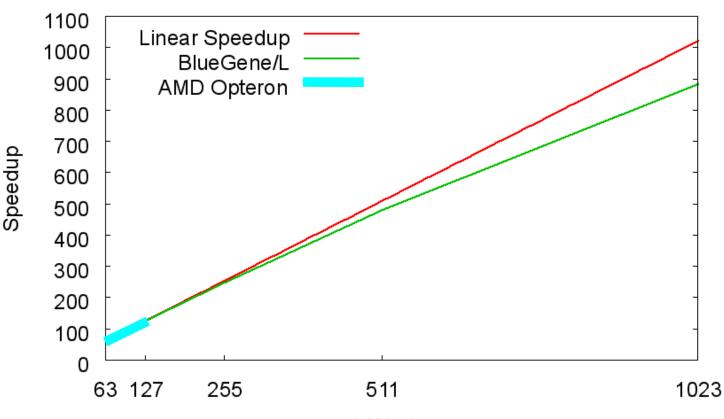


Alexandros Stamatakis, July 2008

SGI ALTIX & Infiniband Cluster Dataset d250_500000 MPI



IBM BlueGene/L & Infiniband Cluster d250_500000

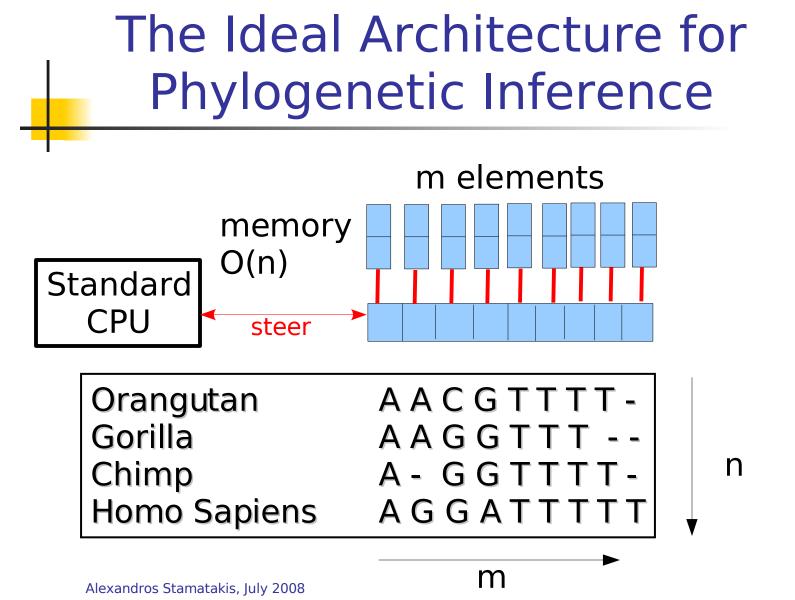


Workers

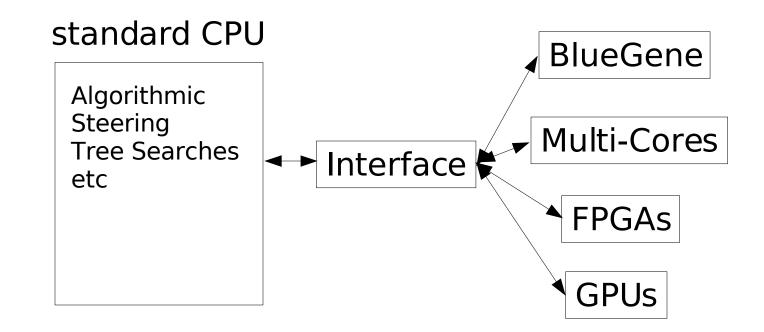
Programming Paradigms: Conclusion

• Use MPI and Pthreads:

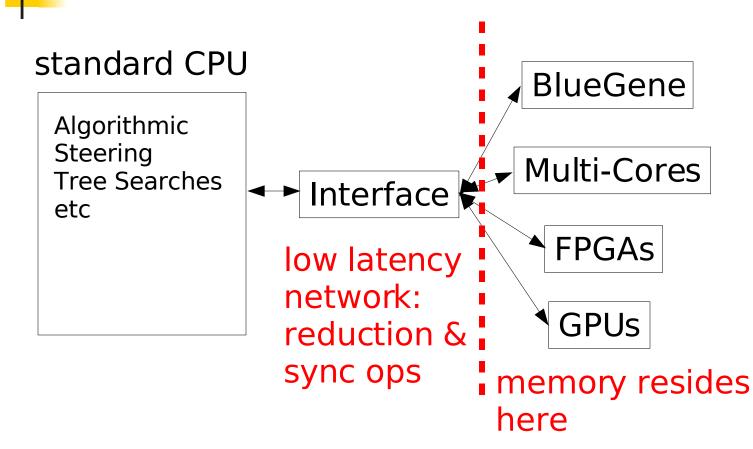
- More programming overhead
- More control
- Enforce data locality with Pthreads for NUMA and MPI for distributed memory machines
- Portability (BlueGene, clusters of SMPs)
- Implement this single complicated parallelization once, use generic interface to access either Pthreads or MPI communication mechanisms
- Pthreads version can be further optimized
- Since easy-to-compile Pthreads-based release in January 2008 → Biologists actually use it



The Ideal World: Basic Phylogenetic Subroutines

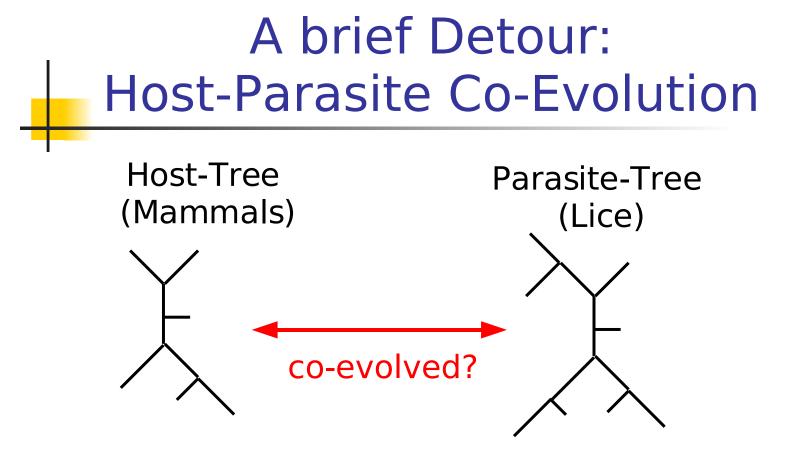


The Ideal World: Basic Phylogenetic Subroutines



Outline

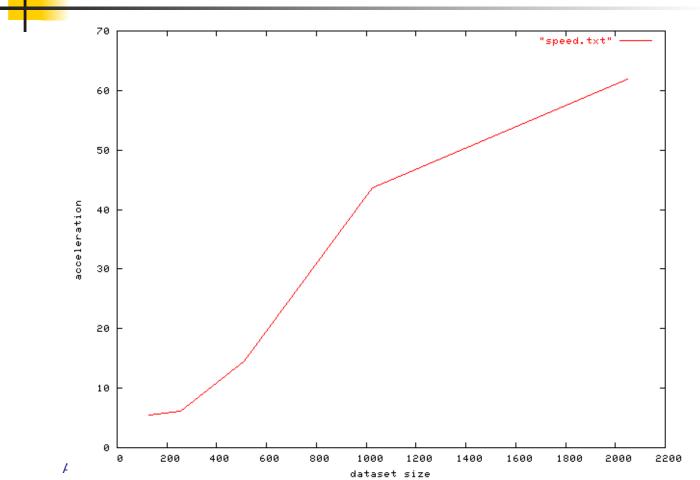
- Introduction
 - Computation of Phylogenies
 - Maximum Likelihood
 - Impact
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges



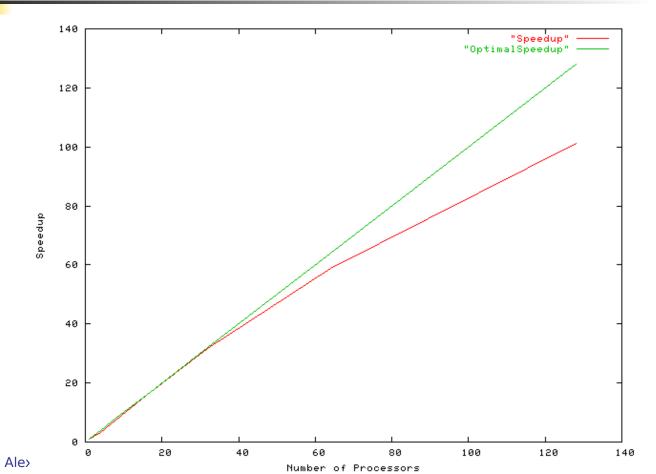
What can HPC do for Bioinformatics? Axelerated Parafit

- "Parafit: statistical test of co-evolution", Systematic Biology 2003
- M. Göker (Tübingen): Need for a faster implementation
- AxParafit (Axelerated Parafit)
 - Application of standard HPC techniques: sequential speedup up to factor 67
 - MPI-parallelization
 - Open-Source Code
- Largest co-phylogenetic study to date conducted within 8 minutes instead of 4 weeks:
 - Alexandros Stamatakis, Alexander Auch, Jan Meier-Kolthoff, Markus Göker: "AxPcoords & Parallel AxParafit: Statistical Co-Phylogenetic Analyses on Thousands of Taxa". In *BMC Bioinformatics*, 8:405, 2007.
 - 245 downloads from distinct IPs since October 2007
- Current work
 - Analysis of complete NCBI data
 - SwissGrid-based Web-server

AxParafit: Sequential Performance



AxParafit: Parallel Performance



Outline

- Introduction
 - Computation of Phylogenies
 - Maximum Likelihood
 - Web Servers
- Computing ML Trees:
 - Search Algorithms
 - Optimization of the ML function
 - Model Issues
 - Parallelism
- Related Topics
- Summary of Future Challenges

Future Challenges Summary

• HPC:

- Handle growing alignments
- Exploit multi-core architectures
- Algorithms:
 - Simultaneously compute good trees & support values
 - Phylogenetic classification
- Models:
 - Model multi-gene alignments
 - Use structure information
- Algorithms & Models:
 - Simultaneous alignment and tree building
- Vision: Simultaneous computation of:
 - Alignment
 - Tree
 - Ancestral States
 - Support Values

Acknowledgments

Michael Ott PhD student at TUM

PhD Positions in Munich

 Two PhD positions in Phyloinformatics available at Exelixis Lab (LMU Munich)

Thank you for your Attention !

Mount Psiloritis, Crete