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Summary

Motivation: Optimization of the efforts spent on cell reproduction is a factor capable of imparting evolutionary trend to the changes in the intracellular parameters. It is necessary to study theoretically the pattern of evolutionary effect of this factor on biological systems.

Results: A simplest mathematical model of cell evolution is constructed and studied basing on the hypothesis on existence of the evolutionary trend to optimize the consumption of unified external energy resources. Analysis of the model demonstrates that the rates of intracellular processes change with time in such an interactive manner that the cell at a certain moment of its evolution acquires the possibility of existing in at least two stable states. The cell, having one and the same genotype as well as the constants of metabolic reaction rates, can still have two essentially distinct phenotypes.

Availability:  http://www.bionet.nsc.ru/bgrs2002/
Introduction

It is supposed conventionally that the state of an organism is determined exclusively by its genotype and the environmental conditions. The possibility of an organism to exist in different states is always associated with the genetically fixed regulatory mechanisms, manifesting themselves under certain conditions. However, there are systems whose alternative states cannot be derived from the structures of their subsystems. For example, a simplest molecular genetic trigger can function in two alternative states; this is the feature of the system on the whole, whereas no its subsystem alone possesses this feature. The question arises on whether autonomous biological systems (for example, cells) in the course of slow and gradual adaptation to the environmental conditions may became more complex through acquiring the possibility of existing in alternative states that cannot be reduced to genetic mechanisms and rates of metabolic reactions. To study this problem from theoretical standpoint, a simplest mathematical model of evolution of a single cell reproduction cycle is constructed in this work. We proceed from the assumption that the biological systems tent to reach homeostasis. Within our simulation method, we consider the cell homeostasis as a nontrivial stationary point of the set of differential equations describing this cell. It is demonstrated that most general organization patterns of unicellular organisms—occurrence of translation machinery, template-based protein synthesis, and reproduction through division—result in complex nonlinear relations between different parts of the cell as well as between the cell and the environment. This provides for a range of parameter values where the cell may have several alternative homeostatic states. Computer simulation of the evolutionary development on the hypothesis of the selection for increased efficacy of external energy consumption demonstrates that this range of parameters is the region of evolutionary attraction (Kuznetsov I.B. et al., 1997; Eigen M. and Schuster P., 1979).

Model

The model of single cycle of cell reproduction considers four types of intracellular components: ribosomes (R), total protein (P), the mRNA coding for ribosomal protein (Fr), and the mRNA coding for the total protein (Fp). It is assumed that the cell consumes for its vital functions a pooled resource (Z), which is spent on syntheses of mRNA and proteins. The cell draws this resource from the environment, whereto it arrives at a constant rate. It is considered that the span of a single cell reproduction cycle is equal to the time necessary to reach the threshold concentration (
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) of the total protein. Syntheses of total proteins Pr(i) and P(i) is described by the following reactions:
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Let us designate the homeostatic parameters of the maternal cell with the superscript (i); of the daughter cell, (i+1). Let us calculate the equilibrium concentration of the pooled resource for the maternal cell, assuming that it is in equilibrium and considering the equilibrium ratio for ribosomes, mRNA, and the pooled resource:
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where R is the unique positive solution of the ribosome equilibrium equation:
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and the span of (i)th cell cycle is
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Ignoring the degradation processes, let us calculate the number of ribosomes produced in the maternal cell over the time T(i):
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Then, the daughter cell will get the following number of ribosomes, symmetrical division provided:
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To simplify the model, let us assume that the mRNA concentrations in the daughter cell are equal to those in the maternal cell, if no mutation occurred. Thus, specifying the values of constants for the initial maternal cell (zero generation cell) and concentrations of ribosomes and mRNA, we can calculate the homeostatic parameters (T(i), Z(i), and R0(i)) for any its progenies (cells of (i)th generation) using equations (3)(7). See table for description of the parameters and variables of the model.

It is assumed that random mutations occur during the reproduction. They may change the mRNA concentrations, Fr and Fp, and the rates of translation initiation, br and bp. The rest parameters are considered as fixed and remain constant from generation to generation. Mutations are assumed rare events, so that a considerable number of generations passes between two successive mutations. Therefore, it is reasonable to assume that homeostatic characteristics of remote progenies of the mutated cell reflect more adequately the evolutionary significance of a mutation. To calculate the homeostatic parameters of remote progenies, we used the limit cases of equations (3)(7) obtained through making i approach infinity (formally, the limit cases are obtained through canceling (i) and (i+1) indices).

The elementary step of evolution is simulated as follows. A random-number generator is used to select a parameter from Fr, Fp, br, and bp; the value of its changing is selected basing on a distribution specified in advance; and the function parameters of a remote progeny of the “mutated” cell are calculated. If a “mutation” decreases the division span, the mutation is fixed; in the opposite case, rejected. The other variant: a mutation is fixed as a result of an arbitrary event with a probability proportional to the difference between the spans required for divisions of remote progenies of the “mutant” and “intact” cells. Thus, evolutionary trajectories of the model movement in the space of the parameters changed (Fr, Fp, br, and bp) were calculated at different specified values of the constant parameters (nr, np, mr,, ke, br, bp, prib, P, n, a, sz, and dz).

Table 1. Parameters of the model.

No.
Symbol
Numerical value
Characteristics

1
Fr0
1,018 pcs./cell1,2,5
Total concentration of the mRNA coding for ribosomal proteins

2
Fp0
510 pcs./cell1,2,5
Total concentration of the mRNA coding for total protein

3
R0
8,340 pcs./cell2,3,5
Total concentration of ribosomes

4
Prib
54 proteins/ribosome4
Number of proteins in ribosome

5
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2,000,000 pcs./cell4
Threshold amount of total protein, determining the span of cell cycle


T
3,433 sec3,5
Span of single cell reproduction cycle

6
Z
1.87 arbitrary units/cell3,5
Total concentration of the pooled resource

7
nr
150 codons4
Length of the total ribosomal protein in amino acid residues

8
np
250 codons4
Length of the total protein in amino acid residues

9
mr
500 nucleotides4
Length of Fr mRNA in nucleotides

1May be changed by random mutations; 2is specified for the cell of (0) generation; 3is calculated for the cell of (i)th generation; 4is specified for the cell of (0) generation and remains constant at all the stages of model function; 5the values indicated were obtained after parameter evolutions (at the parameter values given, the cell position in figure corresponds to occurrence of two homeostatic states—two phenotypes).

Results and discussion

In the general case, the number of different limit equilibrium variants of homeostasis wherein the cell may exist exceeds 1 and is directly connected with the positive roots of the equation

R3  a2R2 + a1R  a0 = 0,






(9)

which has at least one positive root at any combinations of the parameter values.

If the model parameter values (table) do not satisfy the following inequalities:
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where 
а0 = (FrP/Fp/Prib)  (ke/ns/br),

a1 = ke2/ns2/br/bp + Frnrke/ns2/bp + Fpnpke/ns2/br  (FrP/Fp/Prib)  (ke/ns/bp), and

a2 = FrP/Fp/Prib  (ke/ns/br + ke/ns/bp + Frnr/ns + Fpnp/ns),

then only one limit variant for realization of intracellular metabolism exists, to which all the lines of successive cell generations converge independently of the specified non-zero initial value of ribosome concentration in the zero generation cell.

In the opposite case, the equation has at least three positive roots (possibly, multiple), corresponding to two stable and one unstable variants of limit equilibrium homeostasis of the model. In this case, the stable states correspond to the least and biggest roots of equation (3), while unstable, to the medium. If two roots of equation (3) are multiple, the corresponding state is semistable. For short, let us designate the set of parameter values unsatisfying the conditions (2) as D1; the range of parameter values satisfying the conditions (2) as D2.

The transition from D1 region, with a relatively simple behavior, to D2 region, with a more complex behavior, during the evolution is actually a latent self-complication of the system, since the structure of the system remains the same (no new mechanisms emerge), while the set of potential variants of realizing the structurally fixed genetic program under identical conditions widens and selection of an alternative variants is randomized.

The logical scheme used may be also applied to biological systems of a higher organizational level.
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Figure. Change in the cell division span in the course of evolution (calculations according to the model; parameter values are listed in table): (1) optimal phenotype; (2) latent phenotype; and (3) separatrix; the vertical line is the boundary between D1 and D2 regions.
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