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Introduction 

Three volumes of Proceedings of the Fifth International Conference on 
Bioinformatics of Genome Regulation and Structure–BGRS’2006 (Akademgorodok, 
Novosibirsk, Russia, July 16–22, 2006) comprise about 200 peer-reviewed publications 
on the topical problems in bioinformatics of genome regulation and structure. Biology 
now is among the most dynamically developing scientific disciplines. The main factor of 
this progress is an unprecedented, both in the rate and volume, accumulation of new facts 
due to advent of novel state-of-the-art experimental technologies. The post-genome era in 
biology brought about a sharp up-scaling of the research in the fields of genomics, 
transcriptomics, and proteomics. We are the witnesses how new directions of 
experimental and computer molecular biology emerge and successfully advance, 
including sequencing and analysis of megagenomes of bacterial communities, regulation 
of gene expression by short RNAs, microarray analysis technique, construction of 
proteomic portraits of cells and tissues, metabolomics, high-throughput genotyping of 
human populations for biomedical purposes, and many others. However, the synthesis of 
these directions is developing to a lesser degree, while it is a primary need for creation of 
an orderly theory of development, function, and evolution of the living systems—systems 
biology (gene interaction, gene network functioning, signal transduction pathways, 
networks of protein–protein interactions, modeling of ontogenesis, molecular phylogeny, 
the theory of evolution, etc.). The reasons underlying this gap lie not only in the objective 
complexity of the living systems, but also in the specialization in various fields of 
biology, which is ever increasing with accumulation of new data and development of new 
methods. The holistic vision of the research object is disappearing. The goal of this 
Conference, similar to the preceding Conferences—BGRS’1998, BGRS’2000, 
BGRS’2002, and BGRS’2004, which were held in Novosibirsk in 1998, 2000, 2002, and 
2004—is, first and foremost, to provide the possibility for a wide exchange of opinions 
for various experts in in silico biology and researchers involved in experimental studies 
who use computer methods in their work or have interest in applied or theoretical aspects 
of bioinformatics. BGRS’2006 provides a general forum for disseminating and facilitating 
the latest developments in bioinformatics in molecular biology. BGRS’2006 is a 
multidisciplinary conference. The scope covered by the Conference comprises (i) the 
issues of development of advanced methods for computational and theoretical analysis of 
structure–function genome organization, proteomics, transcriptomics microarray analysis, 
etc.; (ii) application of these methods in theoretical (various aspects of evolutionary 
biology) and applied (search for promising application points in biotechnology and 
medicine) fields; and (iii) the issues related to general informational support of biological 
research and education (creation and computer support of databases, retrieval systems, 
ontologies, etc.). Thus, the final goal of this Conference may be defined as a half the 
battle for the new synthesis in Biology, which is a long-standing need, via the dialogue 
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between the experts in particular fields of biology. This is the reason why BGRS’2006, 
along with the traditional sections (computational structural and functional genomics and 
transcriptomics, computational structural and functional proteomics, comparative and 
evolutionary genomics and proteomics, and bioinformatics and education), includes an 
essentially expanded section on computational systems biology, which contains the 
presentations on modeling of molecular genetic systems and processes in bacterial and 
multicellular organisms and modeling of morphogenesis. Moreover, as compared to the 
previous conferences, the presentations related to evolution and phylogeny are plentiful. 
Numerous interdisciplinary studies into various taxa performed by the methods of 
molecular phylogeny, computer genomics, proteomics, cytogenetics, etc., as well as 
comparison of these results with the data obtained by classical methods of evolutionary 
morphology, paleontology, and various directions of ecology revealed the basic 
differences between the rates and modes of evolution at different hierarchical levels of 
biological organization (genes, genomes, karyotypes, organisms, populations, and 
biocenoses). Thus, the actual evolutionary process cannot be reduced to the evolution on 
one of the listed levels and is, speaking in images, an interference pattern, which is the 
more complex, the more interacting blocks and hierarchical levels constitute a biological 
system and the more intricate are their interrelations. Deciphering of this interference 
pattern is one of the challenges for the biology of the XXI century, which is answerable 
only by the joint efforts of bioinformatics and experimental sciences. If BGRS’2006 
succeeds in contributing to this to any degree, the organizers will reckon their goal 
fulfilled. 

Among the main goals of BGRS is improvement in the quality of education in all its 
aspects. That is why the success and international acknowledgement of the preceding 
conferences and the 2005 BGRS Summer School "Evolution, Systems Biology and High 
Performance Computing Bioinformatics" has encouraged launching the 2006 BGRS 
Summer School "Evolution, Systems Biology and High Performance Computing 
Bioinformatics". This School being the co-event of the conference will precede 
BGRS’2006. This event will attract next generation of scientists to bioinformatics. The 
scientific scope of the school will include issues of the development and application of 
advanced methods of computational and theoretical analysis for structure-function 
genome organization, proteomics, evolutionary and systems biology. We hope that the 
School of Young Scientists will become a good BGRS tradition.  

BGRS’2006 is organized by the Laboratory of Theoretical Genetics with the Institute 
of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 
(Novosibirsk, Russia). The organizational sponsors of the Conference are the Institute of 
Cytology and Genetics and the Siberian Branch of the Russian Academy of Sciences. The 
financial sponsor is the Russian Foundation for Basic Research. The School of Young 
Scientists "Evolution, Systems Biology and High Performance Computing 
Bioinformatics" is sponsored by the Russian Foundation for Basic Research and INTAS. 
The organizational support for the School is provided by the Chair of the Informational 
Biology, Faculty of the Natural Sciences of the Novosibirsk State University and the 
Council of Young Scientists of the Institute of Cytology and Genetics, SB RAS. 
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Chapter # 

NEW WAY TO OBTAIN A REGULATORY MOTIF 
REPRESENTATION DUE TO MOTIF  
ABUNDANCE LEVEL 

Abnizova I.*1, Walter K.1, te Boekhorst R.2, Gilks W.R.1 
1 Biostatistics Unit MRC, Institute of Public Health, Robinson Way, CB2 2SR, Cambridge, UK;  
2 Computer Science Department, University of Hertfordshire, College Lane, AL10  92BA, Hatfield 
Campus, UK 
* Corresponding author: e-mail: irina.abnizova@mrc-bsu.cam.ac.uk 
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SUMMARY 

Motivation: An important step in understanding of gene regulation is the recognition 
of gene expression regulatory elements and regions. Experimental procedures for this are 
slow and expensive. We present a novel statistical approach to show the association of 
experimentally verified regulatory elements with over-represented motifs within 
regulatory regions, together with a way to recognize these regulatory regions and make a 
consensus motif description using available online tools. 

Results: In our method, we exploit the fundamental property of regulatory regions: the 
abundance of over-represented transcription factor binding motifs. The method provides a 
way to find these over-represented motifs, in the form of exceptionally large lists of similar 
words, and construct their consensus descriptions. We rank the motifs due to their 
abundance level. The association of experimentally confirmed binding sites and predicted 
motifs allows the method to be potentially used as complementary tool for motif discovery. 

Availability: The source code is available at the http://www.mrc-bsu.cam.ac.uk/ 
BSUsite/AboutUs/People/irina.xml. 

INTRODUCTION 

One of the great challenges in bioinformatics is to understand the varied and complex 
mechanisms that regulate gene expression. We focus on one important step of this 
problem, the statistical characterisation of regulatory regions, and establish an association 
between putative regulatory elements and over-represented motifs within them. 

Regulatory regions, comparatively short sequences (several hundred to several thousand 
base pairs, depending on the species) upstream or downstream of the transcription start site 
often play a major role in the regulation of gene expression. The study of regulatory DNA is 
more difficult than that of coding sequences (Wasserman et al., 2000; Dermitzakis, Clark, 
2002). There are no well known properties in regulatory DNA analogous to open reading 
frames and non-uniform codon usage in coding sequences. This makes it difficult to define the 
consensus  and location of functional regulatory elements, at specific sites within regulatory 
regions, recognized by regulatory proteins (transcription factors), which act upon binding as 
transcriptional repressors or activators, controlling the rate of transcription. Revealing the 
statistical properties typical of regulatory regions and regulatory elements may improve our 
understanding of their evolutionary and functional constraints. 
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A number of computational algorithms designed to search for functional regulatory 
elements using evolutionary comparisons, whole-genome data, and putative co-regulated 
genes have been successfully demonstrated in recent years. It should not be assumed, 
however, that all functional sequences are conserved, and all non-functional have 
diverged. It is also problematic to correctly define a set of co-regulated genes. We suggest 
a statistical approach which may be used as a complementary tool for motif discovery. 
We have tested our approach to find on the annotated regulatory regions of approximately 
19 genes for which experimentally validated transcription factor binding sites (TFBSs) 
are readily available. We developed the software allowing a description of motifs ranked 
due to their abundance.  

We describe here a content based method to characterise regulatory regions and to 
assess an association between regulatory elements and over-represented motifs within 
them. We assume that the abundance of regulatory motifs within regulatory regions 
leaves a distinct “signature” in nucleotide composition, and that it is possible to capture 
this “signature” statistically. More specifically, we hypothesize that it takes the form of an 
over-representation of “similar words” (which are not simple repeats). This over-
representation should show up as outliers in the right tail of the distribution of similar 
word lists of variable length. We identify such outliers, present these word lists as a 
consensus strings, using the well-known WebLogo tool (http://weblogo.berkeley.edu/), 
and show their association with known TFBS.  

MATERIALS AND METHODS  

We assess the association of TFBS and over-represented motifs in regulatory DNA in 
three steps: 
1. We construct the distribution of similar words in a stretch of genomic DNA. We infer 

its putative function using our  “fluffy-tail-test” (Abnizova et al., 2005). 
2. If the sequence passes the test, we identify a number of  significantly  over-

represented  motifs  in the form of families of similar words, which we call the 
maximal similar word lists (MSWLs). 

3. Score the presence of experimentally confirmed TFBS in these lists with Z-scores, and 
assess its statistical significance. 
Then we rank the most  high scored lists, and submit them into WebLogo to obtain 

their consensus description. Note that we call two words of the same length  k-similar, if 
they have k mismatches. Thus, for example, two words “aacctg” and “cacctg” are  
1-similar. Generally speaking, one can run the algorithm for any word length, m (m less 
than the sequence length), and number of mismatches, k. In the work (Abnizova et al., 
2005) we used m = 3,5,7, 9,12 with corresponding k = 0,1,2,3 to infer a putative 
regulatory function of a given DNA stretch. 

We tested the association of confirmed instances of TFBS with our  MSWLs on the 
set of experimentally verified  Drosopila melanogaster  regulatory regions provided by 
Papatsenko et al. (2002). The set consists of 19 regulatory regions from early 
developmental genes, with annotated locations of TFBS. Each regulatory sequence is 
from 700 up to 1600 bp long, containing from 10 to 25 annotated TFBS. 

RESULTS AND DISCUSSION 

In the test data sequences 84 % (16 out of 19) were found to have stronger association of  
TFBS and MSWL than by chance: 2Z ≥ . The results for all annotated 19  regulatory regions 
are summarised in Table 1. Note that the sequences without significant association are actually 
did not pass the “fluffy-tail” test of being regulatory DNA, see last three rows in Table 1.  
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Table 1. The association of TFBS and MSWL for annotated  regulatory regions  

Name of 
regulatory region Z score Nreal μ  s 

AbdominA 3.7 89 30.09 15.6 
Hairy str7 2.1 299 146.4 69.7 
Hairy str5 2.45 49 14.5 14.02 
Even-sk.srt37 4.2 232 98.7 31.3 
Even-sk.srt2 2.01 45 19.5 12.4 
Engrailed intron 2.2 44 8.2 25.7 
Tailles 2.15 51 32.7 8.47 
Ult pbx 4.4 152 62.9 20.1 
Runt5 2.17 107 18.4 66.7 
Spalt early 2.05 187 135.0 27.2 
kruppel 2.7 186 66.2 33.3 
Hairy6 4.62 1358 543.4 182.1 
Orthodent 5.36 1720 679.2 195.9 
ftp 2.08 48 30.7 8.29 
Even-sk.srt46 4.06 146 45.2 24.8 
gooseberry 2.02 88 28.7 30.1 
buttonhead -0.46 54 68.1 30.1 
Ult bre -0.44 13 15.3 5.1 
ftz -0.01 43 43.3 21.0 
Note. Key to the included genes: AbdominA –Abdominal Anterior enhancer, hairy strj –hairy stripe 
(with number j) enhancer, Even-sk.srtij – even-skipped stripe ij enhancer, ult pbx – ultrabithorax 
proximal  regulatory region,  ftp – fushi-tarazu proximal enhancer, gooseberry – gooseberry enhancer,  
ftz – fushi-tarazu zebra enhancer, ulr bre – ultrabithorax enhancer, orthodent – orthodentical enhancer, 
buttonhead – buttonhead cis element. Nreal stands for maximal list size in original sequence, μ and s are 
mean and standard deviation of maximal list sizes in randomised sequences. 

 
We submit these significant MSWL into WebLogo (Crooks et al., 2004) to obtain the  

motifs. One can see an example of such a list for MSWL associated with the 
experimentally verified hunchback TFBS. As a result, we obtain the ‘portrait’ of our most 
abundant motif within the sequence for fushi-tarazu proximal enhancer region as 
following: 

 

Figure 1. The web-logo description of most abundant list of similar words within experimentally verified 
and annotated fushi-tarazu proximal enhancer region. It was found to be associated with ttk annotated 
TFBS. 

Compare the description of the abundant motif above in the Fig. 1 with the real 
experimentally verified tramtrack TFBS instances and their description in Fig. 2. This 
MSWL is associated with tramtrack binding sites within the fushi-tarazu proximal 
enhancer region, and they are reasonably consistent (CAGGAC consensus parts in both 
Fig. 1 and 2): 
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Figure 2.  Instances of experimentally verified ttk TFBS within the fushi-tarazu proximal  enhancer. 

The main message of our method is the ability to pick up true TFBS within significant 
MSWL, and to reconstruct their “generalised” consensus from predicted MSWL. 
However, our method in its current form is not yet a motif discovery tool. In our fluffy 
tail test, the main feature distinguishing regulatory DNA from other genomic DNA  is the 
presence of  exceptionally large families of similar motifs, producing fluffy right tails in 
the distribution of similar list length. These motifs  differ from simple tandem repeats due 
to their spatial arrangement (see Abnizova et al., 2005). From the point of view of motif 
discovery our MSWLs would contain many false positive instances of TFBS. However, 
these “false positive” instances constitute a strong signal and might have an important 
biological role of attracting TFs. For this reason, in our future work we would like to filter 
MSWL by utilising other motif discovery methods. Our results indicate a significant 
statistical association of over-represented motifs with experimentally confirmed TFBS in 
confirmed cis-regulatory modules. This association suggests our methodology might be of 
value, in combination with other strategies, for motif discovery. 
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SUMMARY 

Motivation: Traditional gene clustering algorithms focus only on the raw expression 
data for clustering genes whereas valuable information about genes is available in the 
form of GO trees. We aim to use this information along with expression data to produce 
better gene clusters. 

Results: We propose an algorithm that produces good quality cohesive clusters and 
does not require the a priori specification of the number of clusters. The proposed 
algorithm comprehensively outperforms the k-means and random clustering algorithms 
on two yeast cell data sets. 

Availability:  Available on request. 

INTRODUCTION 

Microarray technology produces expression data for thousands of genes under 
different conditions. Interpretation of this huge volume of observed data requires the 
clustering of genes that have correlated expression profiles. Clustering can help identify 
genes that may have common functions or those that may be part of common regulatory 
networks. Traditional clustering algorithms have focused on the raw gene expression data 
for performing this task (Brazma, Vilo, 2000). However, valuable biological knowledge 
in the form of the Gene Ontology (GO) can provide useful inputs for producing 
meaningful clusters. The GO represents terms in a directed acyclic graph (DAG), 
covering three taxonomies namely molecular function, biological process, and cellular 
component. For example, the gene product cytochrome can be described as follows: 
molecular function terms: oxidoreductase activity; biological process terms: oxidative 
phosphorylation, induction of cell death; component terms: mitochondrial matrix, 
mitochondrial inner membrane. The DAG consists of terms represented as nodes 
connected by relationship edges. The ontology annotates gene products with different 
terms across the graph. In this work we adopt a hybrid approach towards gene clustering. 
We use knowledge available in the form of GO together with gene expression data to 
perform clustering.  
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ALGORITHM 

Distance measure between GO nodes. We use the GO process ontology, to find the 
distance between GO nodes. Each GO node is annotated with a list of genes; some nodes 
can be un-annotated. Since GO is a DAG a GO node can have multiple parents and 
multiple children. As a particular node can have multiple parents the GO DAG is 
transformed to get a directed tree structure. The level of a node is defined as the number 
of nodes between the node and the root node. The procedure for converting the DAG to a 
directed tree is as follows:  

Do { 
Visit every node x in the DAG 
If node x has k>1 parent then: 

• Create k nodes and make each newly created node a single child of a distinct parent of x.  
• Replicate annotations of x across the k newly created nodes. 
• Make each child of x a child of each newly created node.  
• Remove node x. 

} Until (No change in DAG) 
We define  a weight function f:{1,2, …, N} → R where N is the maximum level of 

any node in the obtained directed tree and R is the real line such that f is a decreasing 
function i.e. f(i) > f(j) for all i < j.  

The distance between nodes i and j in the directed tree is defined to be the weight of 
the level of the Least Common Ancestor (LCA) of the nodes i and j. The arguments in 
support of choosing this as a distance measure and the proof that it is in fact a distance 
metric can be found in Lee et al. 2004. 

Calculation of gene distance matrix from the directed GO tree. We calculate the 
distance between all gene pairs which are annotated in the directed GO tree. We first 
prepare an n*m table T where n is the total number of genes and m is the number of nodes 
in the GO tree. The rows represent the gene and the columns represent the attributes or 
GO nodes. We treat each GO node as an attribute. As a single gene may be annotated to 
multiple nodes we check for the list of annotations of a single gene and put a 1 in every 
attribute column with which the particular gene is annotated. So we get a binary table, 
which is used for calculating gene distance. We define diff(i, j) to be the number of 
differing entries in corresponding columns of rows i and j. The gene distance between 
genes gi and gj GOdist(gi,gj) is defined to be: GOdist(gi,gj) 

= 2
1 1

1
,

( , )
( ) ( )i in m
T T d

diff i j α β<=α<= <=β<=
− α β∗ ∗∑ ∑ ; ( , )d α β is the GO distance 

between GO nodes α andβ . We get a gene distance matrix G of the order n*n where n is 
the number of genes. 

Definitions: 
• Average GO distance GOavg(C) corresponding to a gene cluster C = gi, 1 < = i < = k, 

1 ,
2

( )
( , )i j

ki j k

G Odist g g
G Oavg C

C<= <=
= ∑ ; GOdist(gi, gj) is the GO distance 

measure between gi and gj based on the gene distance matrix G. 
• Scatter of a cluster Scatter(C) C = gi,1 < = i < = k, where gi’s are the members of the 

cluster C 
1

( ) ( )( ) ;T
i ii k

Scatter C x x
<= <=

= − μ − μ∑ where xi is the 

expression vector of gene gi and μ is the average expression vector for the cluster C. 
(xi−μ)T is the transpose of the vector xi − μ.  

• The objective function for partitioning the MST for a given number of clusters k F(k):     

F (k) = 
1

1
* ( ( ) ( ))i ii k

GOavg C Scatter C
k <= <=

+∑   
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• Scorei is the minimum value of the objective function F (i) obtained for a given 

number of clusters i and Clusteri is the optimal cluster set corresponding to it. 
Iterative Clustering Algorithm. The sequence of steps followed by the algorithm is 

as follows: 
1. Calculation of expression data distance matrix: Use Euclidean measure to calculate 

gene expression data matrix E of order n*n. 
2. Scale both gene distance matrix G and expression data matrix E to the same range 

and combine them to get net distance D. 
3. Make a fully connected graph with genes as nodes with edge weight between node i 

and node j equal to the distance between gene i and gene j obtained from the net distance 
matrix D. Find the minimum spanning tree of this fully connected graph. To cluster, 
partition this Minimum Spanning Tree (MST) into k sub trees where k is the number of 
desired clusters (Xu et al., 2002). 

4. The iterative algorithm is as follows: 
INPUT: MST obtained from step 3. 
a. Initialize k to 1. 
b. while k < MAXCLUSTERS{ 
c. Perform a random k-partitioning of the Minimum Spanning Tree (MST) by 

removing k-1 edges. Then perform the following operation until the process converges. 
For each pair of adjacent clusters, go through all the edges in the merged cluster of the 
two to find the edge to cut, this globally optimizes the 2-partitioning of the merged cluster 
measured by objective function F(k). 

d. Scorek.= F(k), save the optimal cluster set obtained in above step as Clusterk 
e. Increment k. 
} 
f. Search the list of scores to find the minimum element Scoremin and output the 

cluster set Clustermin corresponding to it. 

RESULTS AND CONCLUSION 

We used the data set of the Yeast cell cycle in which activity was measured at 18 time 
points. We used two subsets each consisting of 500 genes for testing the algorithm. 
Cluster validation was done using figure of merit score (FOM). We compared the 
proposed algorithm with k-means, random, and our algorithm without using GO 
distances. Fig. of Merit score (FOM) is defined as in (Yeung et al., 2001) suppose e is the 
left out condition of the m experimental conditions present in the data set, let there be k 
clusters C1,C2, ...Ck, and let Eg,e be the expression level of g under condition e. Let μCi (e) 
be the average expression level in condition e for genes of cluster Ci. 

2
,

1

1
( , ) * ( ( ))

i

i

x e C
i k x C

FOM e k E e
n < <= ∈

= − μ∑ ∑  and 
1
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FOM k FOM e k
<= <=
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We use FOM (k) to assess the quality of clusters obtained from different algorithms 
for a given number of clusters k.  It is basically a leave one out approach, where 
clustering is performed using all but one of the experimental conditions in the data set. 
The left out condition is used to assess the predictive power of the clustering algorithm. 
The FOM score represents scatter from the actual value at test condition; thus lower the 
FOM score higher is the predictive power of the algorithm and better is the quality of 
clusters obtained. 

The performance graph for the four algorithms on the two data sets is shown in  
Fig. 1a, b. The following can be observed from the plots of Fig. 1a: (a) The proposed 
algorithm outperforms k-means and the random algorithm for greater than 10 clusters. (b) 
The proposed algorithm without GO distances outperforms k-means after 20 clusters. (c) 
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The proposed algorithm without GO distances outperforms random algorithm right from 
the beginning. (d) The proposed algorithm outperforms the one without GO distances 
right from the beginning. Performance on the second data set (Fig. 1b) reveals the 
following: (a) The proposed algorithm with and without GO distances outperforms k-
means and the random algorithm right from the beginning. (b) The proposed algorithm 
outperforms the one without GO distances right from the beginning. We conclude from 
these observations that the proposed algorithm outperforms k-means and the random 
algorithm and the usage of GO distances improves cluster quality. 

 

Figure 1. Performance analysis on dataset1 (a); performance analysis on dataset2 (b). 
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SUMMARY 

Motivation: Application of the methods of computer-assisted genome annotation 
coupled with large-scale experimental studies may be helpful in determining possible 
functions of numerous unstudied genes. The search for interferon-inducible genes is of 
particular interest. As known, interferons modulate the work of the immune system: they 
exert antiviral, antibacterial, and antitumoral effect. Although the system of interferons is 
being actively studied during several dozens years, the mechanisms of its functioning are 
still not clear in many respects. 

Results: By using the methods developed for recognition of interferon-inducible 
genes, an analysis of DNA sequences of more than 2000 genes within the length limits 
from -1000 to +1000 bp relatively transcription start was performed. We have detected 78 
genes that could be interferon-inducible with high probability and could participate in 
supporting some interferon’s functions. 

Availability: The list of predicted interferon-inducible human genes obtained in the 
course of the work considered is available at http://wwwmgs.bionet.nsc.ru/mgs/papers/ 
ananko/iig-trrd/ISG_predicted.html. 

INTRODUCTION 

Interferons (IFNs)1 are classified into two types: IFNs type I, or virus-inducible acid-
resistant interferons (e.g., leukocyte IFN-α, fibroblast IFN-β, IFN-δ, IFN-ε, IFN-κ, IFN-ω, 
IFN-τ, and IFN-z) and IFN type II, or immune acid-liable IFN-γ. Type I interferons are 
mainly support antiviral state of the organism (Pestka et al., 2004), whereas IFN-γ makes 
larger impact in providing antibacterial and antiparasitic responses (Decker et al., 2002). 
Also, IFN-γ was shown to participate in development of autoimmune states (Baccala  
et al., 2005). 

By studying signal transduction pathways of interferon system, it was established that 
IFNs type I cause activation of ISGF3 transcription factor, whereas IFN-γ – activation of 
the STAT1 homodimer (Platanias, 2005). Type I interferons activate also Akt serine- 
threonine kinase and p38/MAP-kinase cascades, as well as the signal transduction 
pathways leading to activation of NF-κB and р53 transcription factors: all these factors 
participate in the antiviral immune response and tumor suppression (Pestka et al., 2004; 

 
 

1 The abbreviations used are: bp, base pair; IFN, interferon; ISG, Interferon-Stimulated Genes; ISGF3, 
Interferon-Stimulated Gene Factor 3; IRF, Interferon Regulatory Factor; STAT, Signal Transducer 
and Activator of Transcription. 
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Platanias, 2005). Interaction of these and some other transcription factors with 
transcription factor binding sites in regulatory regions of interferon-stimulated genes 
(ISG) mediate significant increase of gene transcription. 

METHODS AND ALGORITHMS 

For recognition of transcription factor binding sites, we have used an additive recognition 
function with application of statistic simulation approach (Kondrakhin et al., 2006). 

For selecting individual sites for recognition of ISG, we have applied a statistical test 
that compares two binomial values, that is, mainly those sites were selected, relative 
occurrence frequency of which within the interferon-inducible genes (F1) was statistically 
increased in comparison to that of the genes entering the control sample of genes 
extracted from the EPD database (F2). To select a pair of sites, we have used the standard 
statistical test χ2. For majority of selected sites and pairs of sites, p-value, was < 0.001. 

The score at each position of arbitrarily chosen sequence SEQ0 was calculated as 
follows. First, we have selected m objects from the training sample (i.e., sites and pairs of 
sites), T1, T2, …, Tm.. Then for the i-th position of the sequence SEQ0, we calculate m of 
weights w1,w2, …, wm by the formula: 

wi = {1, if the i-th object, Ti, is not found at respective positions of the sequence SEQ0; 
F1/F2, in case the i-th object, Ti, is found at respective positions of the sequence SEQ0}. 
Then we calculate the score by multiplying the weights w1, w2, …, wm , so that   
 
SCORE = w1 * w2 * … * wm .                   (1) 
 
Then we calculate the score for all positions of the sequence SEQ0 and select the 

position with the maximal score.  
Notably, the more is the number of the objects selected at relevant positions of the 

sequence SEQ0, the higher is the score. In other words, SCORE is a function measuring 
similarity between the sequence SEQ0 studied and the training sample, out of which the 
objects T1, T2, …, Tm were extracted.  

For calculation of SCORE for each method (see results), the same multiplicative 
function (1) was applied, but for each method its own set of pre-selected objects (i.e., sites 
and pairs of sites), T1, T2, …, Tm, was used. 

RESULTS 

By using three methods of ISG recognition (Kondrakhin et al., 2006), we have studied 
1664 human genes, within the regions from -1000 to +1000 bp relatively transcription 
start site, annotated in the EPD database. In order to minimize type II error, we have 
ordered very stringent threshold limits for all these three methods applied simultaneously. 
The threshold value of recognition function for the method 0 (induction by any IFN) 
equals to 0.4. The values of the other two recognition functions should also exceed the 
threshold level equaling to 0.4 for the method 1 (induction by type I IFNs) and 0.3 for the 
method 2 (induction by type II IFN). 

The verification of recognition methods was accomplished by using the sample of ISG 
that were identified by microarray data (sample M0 for the positive control). In Table 1, 
the results of recognition of IFN-inducible genes in different samples of genes are given. 
In addition to the training sample ISG-TRRD that was compiled on the basis of the TRRD 
database (Kolchanov et al., 2002), and the sample M0 for the positive control, we have 
also tested the sample compiled on the basis of EPD database (1664 human genes). As the 
negative control, we have analyzed two samples containing very small percentage of ISG, 
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i.e., genes regulated by glucocorticoids (GR-TRRD) and genes of lipid metabolism (LM-
TRRD). Recognition was performed under the same conditions for all the samples: the 
sequences from -1000 to +1000 relatively transcription start site were analyzed. 

In total, among 1664 human genes extracted from the EPD database, we have found 
78 genes that potentially response to stimulation by interferons (Table 1). Four genes out 
of 78 were previously included into the training sample. For 60 genes detected, the 
stimulation by interferons was not reported yet. In addition, for 13 genes, experimental 
evidence was obtained demonstrating that transcription is enhanced under the action of 
interferons by means of RNA microarray data. In 28 genes found, the regions of maximal 
sensitivity to interferon induction were located in promoter region (from -200 to+50 bp 
relatively transcription start). 

Table 1. Recognition of interferon-inducible genes among different samples under the threshold 
limitations equaling to 0.4 for the method 0 and method 1, and 0.3 for the method 2 

Sample 
Sample size 

(total number of 
sequences) 

Genes recognized 
(total number) Genes recognized (%) 

ISG-TRRD 72 17 23.6 
М0 1005 156 15.5 
EPD 1664 78 4.7 
GR-TRRD 70 1 1.7 
LM-TRRD 58 0 0 

DISCUSSION  

The potential ISGs found may be classified into several functional groups with respect 
to biological activities of interferons as the genes involved into (i) immune and 
inflammatory response, (ii) regulation of cell proliferation and differentiation, and (iii) 
antitumoral effect (see the complete list of genes at http://wwwmgs.bionet.nsc.ru/ 
mgs/papers/ananko/iig-trrd/ISG_predicted.html). For 21 genes, it was difficult to relate 
their activity with biological function of interferons, so they are considered as possible 
over-estimation.  

Due to our estimates, by taking into account possible over-estimation (in total, 21 
genes out of 78 recognized, or 1 % of the sample), human genome carries about 3000 
ISG. This value does not contradict to microarray data. For example, only in the primary 
culture of monocytes isolated from peripheral blood of patients diseased by hepatitis C, at 
least two-fold induction of 1012 genes was registered under the action of IFN-α during 6 
hours after simulation (Ji et al., 2003), whereas in IFN-γ-stimulated macrophages, 632 
genes were induced (Ehrt et al., 2001). In hepatocarcinoma cell line HepG2, out of 14 112 
genes considered, more than 400 genes were induced by two-fold by IFN-α and 405 genes 
were induced by IFN-γ (Xiong et al., 2003).  

Simultaneous application of computer-assisted methods for recognition of genes 
simulated by various IFNs enables to reveal in mammalian genome with high accuracy 
ISG that are involved in interferon system functioning. 
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SUMMERY 

Motivation: Abundant information about all the currently known human genomic 
polymorphic markers is stored in the databases, whose sophisticated structure makes 
difficult efficient search of the required information. The development of a specialized 
secondary database with the information presented more compactly can substantially 
facilitate the user’s work. 

Results: We developed a specialized database that contains information about the 
polymorphic markers of the CCR2 gene and neighboring DNA regions, population 
frequencies of certain polymorphisms and SNP associated diseases and traits. The database 
can be useful for extracting in silico the polymorphisms of the CCR2 gene that have causal 
effect on the pathogenesis of diseases associated with immune system responses. 

Availability: The database is available on request from the authors. 

INTRODUCTION 

Single nucleotide polymorphisms (SNPs) are currently the most informative markers for 
the genes that cause common complex diseases. SNP are more abundant (1 SNP per 100–
1,000 bp), their detection is cheaper and less labor consuming than that of the other genomic 
polymorphic markers. Information about the SNPs and other polymorphic markers of the 
human genome is stored in the well known free available databases, including dbSNP, 
HGVbase, OMIM, and others. However, the bulky universal archives have complicated 
structures, this poses obstacles to search of the needed information about genetic markers 
and associations with diseases. Besides, these archives usually do not contain the data about 
the traits and diseases, because manual annotation of the continually expanding scientific 
information is required. Assembly of the data for polymorphisms in more specialized 
databases would allow to store them in the more compact and accessible format. Thus, the 
user’s job to tracking polymorphisms would be facilitated. 

The CCR2 gene is of major interest with reference to certain widespread threatening 
diseases (AIDS, cancer, diabetes) (Le et al., 2004). We have previously demonstrated that 
substitution of valine by isoleucine at position 64 of the protein sequence (V64I) is 
associated with myocardial infarction (MI) (Voevoda et al., 2002). Support for this 
association subsequently came from two independent teams. However, the detection of the 
association does not yet mean that this particular polymorphism is the cause of disease 
predisposition. It may be located on a chromosome nearby another truly disease-causative 
polymorphism. The database for the human CCR2 polymorphisms is required for search of 
the causative polymorphism at the predisposition locus to MI. It is hoped that the database 
we newly created would be a helpful tool to researchers dealing with the CCR2 gene. 



28 Part 1
 
METHODS AND ALGORITHMS 

Search in the Internet resourses was done by using the National Center for Biotechnology 
Information Service (http://www.ncbi.nlm.nih.gov/). The database was created as tables on the 
MS Excel format. Hyperlinks to the respective URL were added manually when required. 
Annotated abstracts and full article texts were the main sources for filling up the database. 

IMPLEMENTATION AND RESULTS 

We have developed a specialized database that contains information about 
polymorphic markers (predominantly SNPs) in the CCR2 gene and its neighboring DNA 
regions, their population frequencies and also about the trait and diseases associated with 
these polymorphisms. The database consists of 4 interrelated tables. Table “GENE” 
contains the general information about the gene: its complete and short names, references 
to the cards of the gene in the databases EntrezGene, GeneCards, EMBL/GenBank, 
NCBI, references to the protein card in the SwissProt databases. Table 
“POLYMORPHISMS” contains the following data about polymorphisms: identification 
number (rs#) in the dbSNP database, nucleotide position in the chromosomal contig, 
positions of the substituted amino acids in the protein, validation status. The information 
includes also the polymorphism effect on the gene expression level (if available), links to 
cards in the NCBI, UCSC and SwissProt databases, references to the published literature 
data; nucleotide sequences from the dbSNP database that flank the polymorphic site are 
additionally provided. The "“DISEASES” table lists the names of the diseases, SNP-
diseases association (yes or no), ethnic group, sex and age of the subjects in the examined 
sample. The “POPULATIONS” table includes the country and region, the name of the 
examined population, the frequencies of the minor allele and of its genotypes. The third 
and fourth tables contain hyperlinks to the original publications and to their abstracts in 
the PubMed database, and currently contain information about SNP CCR2-64I only.  

The compiled database contains information about 41 polymorphisms. Besides 36 
SNPs, the database provides information about 4 single nucleotide and 1 dinucleotide 
deletions. 4 polymorphisms are located in the promoter region, 21 are in the first intron 
(Fig. 1, positions 42757–46055), 2 are in the second intron (positions 47047–48254) 6 are 
in the coding parts (positions 46106–47046; 48255–48438) of exons (of these, 3 are 
nonsynonymous), 4 are in the 3’UTR (positions 48439–49505), and 4 are in the 3′-
flanking distant region of the gene. The classification of the polymorphisms was based on 
the structure of the longest mRNA (isoform A). The validation status of 6 polymorphisms 
is “unknown”; the existence of others is experimentally supported. There are 66 units that 
describe disease associations and 131 information units for the population frequencies. 
We intend to further annotate and improve the database.  

DISCUSSION 

The CCR2 gene has 3 exons and covers about 7 kb on human chromosome 3p21 (Fig. 1). 
There are two known alternative mRNA isoforms, A and B. Both have identical 5′-ends 
composed of exon 1 (positions 42728-42756) and the 5′-part of exon 2 (positions 46056–
47046), but they differ by the mRNA regions encoding their carboxyl end and 3′UTR. 
The two isoforms code the functional receptors differing by subcellular localization. The 
41 polymorphisms in the database are unevenly distributed according to gene nucleotide 
sequence. SNPs are densest in the first intron, rare SNPs occur in the second. The average 
polymorphism density (1 SNP per 200 bp) agrees with their average density in the human 
genome. However, because we presented the total data for the numerous samples that 
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differed by ethnic group, sex, age and other features, the SNP list will increase with time. 
Evidently, the information about SNP associations with certain diseases is inconsistent. 
We revealed 5 publications that examined the CCR2-64I association with MI (Gonzalez 
et al., 2001; Voevoda et al., 2002; Ortlepp et al., 2003; Petrkova et al., 2003; Bjarnadottir 
et al., 2005). The association was proven in 3 of the 5 (Voevoda et al., 2002; Ortlepp et 
al., 2003; Petrkova et al., 2003). Probable environmental (diet, lifestyle etc) and/or 
genetic factors that may abolish the association between CCR2-64I and MI are yet to be 
found. It is of interest that in the popular OMIM database the CCR2 card does not 
mention association with MI. Regrettably, the OMIM is advisable so far as a preliminary 
introduction to the problem. The information about the population frequencies of the 
CCR2-64I allele would allow comparing the frequency of this polymorphism with 
morbidity and mortality of cardiovascular diseases among a population under study. 

 

Figure 1. A schematic representation of the CCR2 gene with known mRNAs and polymorphisms.  
a – the region of the gene with polymorphisms whose positions correspond to the contig nucleotide 
sequence with accession number NT_079509. Arrow points to the transcription start, coding parts of 
exons are black, the 5′UTR and 3′UTR are shaded, b – the known tissue-specific mRNAs, isoforms A 
and B. The coding parts of exons are black, the 5′UTR and 3′UTR are shaded, and the introns removed 
by splicing are shown by thin line. 

The nucleotide sequences flanking the different SNPs in the CCR2 gene, which we 
collected in the database, will make it possible to perform an in silico search of the 
polymorphism causing predisposition to MI. The functional analysis of the 
polymorphisms in the noncoding parts of the gene, using special software tools is 
required. The technology would predict the potential transcription binding sites, splicing 
sites and RNA secondary structures. The functional analysis of the SNPs that causes 
nonsynonymous substitutions in the protein can be combined with the software tools 
usually used to predict protein 3D structures and identify the functional motifs in protein. 
Two CCR2 mRNAs were detected. The isoform A includes the three exons of the CCR2 
gene. The isoform B contains the first, second exons, and part of the second intron. 
Interestingly, the second intron differs from the other part of the CCR2 gene by low 
density of the polymorphisms. The polymorphisms are located on the flanks of this intron, 
not on its central part. It is possible that certain SNPs in the sequences of the flanks are 
involved in splicing regulation. Using contextual DNA analysis, we expect that computer-
assisted data would clarify whether the polymorphisms are involved in regulation of the 
CCR2 gene expression. As a result, each polymorphism will be assigned a weight score 
and each will be ranged according to the priority of its putative effect on the final 
phenotype trait (MI).  

The high cost of genotyping raises the question, how to choose the best – the less 
voluminous and most informative set of SNP polymorphisms for an associative survey of 
candidate genes or loci on a chromosome. It would appear that preliminary SNPs 
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weighing according to their potential functional contributions to a particular trait (disease) 
would allow us to elaborate a new algorithm for search of causative polymorphisms 
which predispose to common complex diseases. Thus, the proposed database for the 
human CCR2 gene polymorphisms contains informative guidelines for in silico search of 
the polymorphisms relating to diseases associated with the immune system responses, in 
particular those causing MI predisposition. 
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SUMMARY 

Motivation. Length and number of introns in genes of different eukaryotes, including 
human, varied within wide range of limits. It was important to clarify a quantitative 
regularity is in exon-intron organization of genes. The elucidation of exon and intron 
lengths variation in genes will promote determining intron function.  

Results. The number of introns in genes was proportional to total length of exons and 
gene length of chromosomes 1, 2, 13, 19, 21 and 22 in Homo sapiens genome. The 
variations of intron and exon lengths in genes depended on number of introns in genes 
and genes density of DNA region. 

INTRODUCTION 

Genes containing introns were more than 90 % in nuclear genomes of H. sapiens 
(Venter et al., 2001). There was a considerable heterogenity of exon and intron lengths in 
genes, which provided determination of regularities of exon and intron lengths variability 
in every chromosome of H. sapiens genome. The number of genes including introns, 
number of introns in genes and a ratio of exon and intron length varied for different 
organisms (Duetsch, Long, 1999; Ivashchenko, Atambaeva, 2004). The relationship 
between exon and intron lengths that depend on number of introns in genes and gene 
density of DNA region in some chromosomes of H. sapiens has been determined. 

METHODS 

Nucleotide sequence of DNA have been extracted from GenBank 
(http://www.ncbi.nlm.nih.gov/). DNA sequentially was divided into regions of 1 Mbp 
length, which were put according to gene amount in groups from 1–11, 12–20, 21 and 
more genes per 1 Mbp. In each group have been analyzed the samples of genes containing 
1–2, 3–5, 6–9, 10–14, 15 and more introns. The average values of intron and exon 
lengths, and total length of gene have been determined for each sample of genes. The 
analysis of frequency of occurrence of exon lengths has been made for following length 
intervals: 1–20, 21–40, 41–60 nt and so up to 400 nt and also more than 400 nt. 
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RESULTS 

The allocation of genes along a DNA of chromosome 1 was heterogeneously also 
gene amount of region 1 Mbp length varied from zero point to 68 genes. In the group 
including 1 to 11 genes per region of chromosome 1 (average value was 4 genes/Mbp) 
exon length decreased from 282 to 135 nt, as well as the number of introns in genes (Nin) 
increased. The average total exon lengths (Lex) in genes increased from 691 to 3163 nt 
and the positive correlation between Nin and Lex variations was found out. This 
relationship was described by the following equation: Nin = aLex + b, where a and b are 
coefficients of linear regression. The values a and b, and coefficient of correlation (r) 
were shown in the Table1. The average gene length (Lgn) containing 1–2 introns was 
22485 nt and it was 146296 nt from sample of genes containing 15 and more introns. 
There was a positive correlation between gene length and number of introns, which was 
represented by an equation: Nin = cLgn + d, where c and d are coefficients of linear 
regression (Table 1).  

Table 1. Parameters of linear regressions between number of introns and length of genes or sum of exon 
lengths  

Parameters of linear regressions Genes/ 
1 Mbp a b r c d r Nu.genes 

Chromosome 1 
4 0.0085 -4.06 0.997 0.00018 -3.96 0.966 273 
16 0.0083 -3.40 0.997 0.00025 -0.70 0.967 325 
26 0.0079 -3.88 0.989 0.00043 -1.64 0.991 320 
32 0.0079 -3.74 0.997 0.00066 -2.12 0.971 396 

Chromosome 2 
4 0.0078 - 3.15 1.000 0.00016 - 2.93 0.984 428 
4 0.0072 - 3.26 0.998 0.00013 - 0.48 0.991 525 
15 0,0058 - 0,71 0.983 0,00024 - 0,39 0.985 376 
29 0.0076 - 2.70 0.998 0.00060 - 2.16 0.964 186 

Chromosome 13 
3 0.0082 -7.11 0.987 0.00008 0.91 0.983 222 
15 0.0088 -4.92 0.988 0.00023 -0.24 0.970 72 

Chromosome 19 
5 0.0093 - 4.39 0.994 0.00043 -4.10 0.861 34 
16 0.0088 - 9.89 0.886 0.00030 -2.36 0.828 83 
31 0.0080 - 4.99 0.988 0.00057 - 2.43 0.998 647 
35 0.0068 - 2.65 0.988 0.00053 - 0.65 0.998 644 

Chromosome 21 
4 0.0070 - 1.90 0.997 0.00022 -3.94 0.986 110 
17 0.0088 - 5.33 0.977 0.00042 - 2.52 0.961 100 
30 0.0069 - 1.92 0.956 0.00053 - 7.63 0.952 18 

Chromosome 22 
5 0.0061 - 0.06 0.995 0.00013 1.33 0.972 91 
15 0.0069 - 1.71 0.976 0.00034 - 2.83 0.992 124 
28 0.0085 - 3.42 0.998 0.00047 - 2.49 0.987 273 

 
It was established the change of the average exon length, when the number of introns 

in genes increased. For example, the average exon length decreased from 274 to 135 nt in 
16 genes/Mbp group, sum of exon lengths increased from 706 to 2946 nt, length of genes 
increased from 5108 to 77198 nt accordingly for 1–2 introns genes and for genes 
containing 15 and more introns. The positive correlation between the sum of exon lengths 
and the number of introns in genes is shown (Table 1). The average intron length of the 
first gene group was 10576 nt and for the second gene group was 4128 nt. The result of 
the decrease of intron length was the contraction of the average gene length for all gene 
samples and accordingly a variation of linear regression parameters between gene length 
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and intron amount in genes (Table 1). While further increasing the gene density per 1 
Mbp this tendency was observed too (Table 1). For example, in a gene group, where the 
density was 32 genes/Mbp, the average exon length decreased from 304 to 144 nt, the 
sum of exon lengths increased from 745 to 3308 nt, the gene length increased from 3918 
to 32856 nt accordingly in 1–2 intron genes and in genes containing 15 and more introns. 
The relationship between the number of intron in genes and the total exon length for 
genes of four groups from chromosome 1 were shown in a Fig. 1. The correlation 
coefficients have been obtained from the great samples of genes and testify to a high 
reliability of this relationship (р < 0.001).  

 

Figure 1. Correlations between total exon length (a), gene lengths (b) and number of introns in genes of 
chromosome 1. Regions having of gene density: 4 genes/Mbp – ■, 16 genes/Mbp – ●, 26 genes/Mbp – 
▲ and 32 genes/Mbp – ♦; x-axis – sum of exon lengths (a) and gene lengths (b), nt; y-axis – number of 
introns in genes. 

The greatest average density of genes/Mbp has chromosome 19 and two gene groups 
were formed a high gene density (Table 1). In both gene groups the relationship between 
sum of exon lengths and number of intron in genes was similar and was characterized by 
high correlation coefficients. Chromosome 13 has the lowest average density of 
genes/Mbp, however in two groups of genes the relationship between sum of exon lengths 
and number of introns in genes was similar and the high correlation coefficients were also 
presented too (Table 1). In the group with low gene density (3 genes/Mbp) the gene 
lengths increased from 27194 nt (1–2 introns in a gene) to 332554 nt (15 and more introns 
in a gene). The chromosomes 2, 21 and 22 had essential heterogeneity of gene distribution 
along a DNA. In all groups of genes between the sum of exon lengths and the number of 
introns in genes the relationship clearly appeared and had a high correlation coefficient 
(Table 1). The value of parameter a was similar for linear regressions of all the gene 
groups of every chromosomes. It obvious, the revealed connection is universal for all 
investigated human chromosomes and reflects an unknown intron function as sharing the 
protein coding part of a gene into segments.  

The exon and intron share in the range of length 1–400 nt and more than 400 nt 
changed depending on gene sample in all the gene groups. In genes of H. sapiens 
chromosomes 1, 2, 13, 19, 21 and 22 the share of exons having length more than 400 nt 
decreased when increasing of number of introns in a gene, thus the share of exon having 
length 60–180 nt increased. For example, in the chromosomes 1 and 13 the share of exon 
with the length of more than 400 nt in 1-2 introns genes was 27.2 and 31.0 %, and in 
genes containing 15 and more introns 2.1 and 2.8 % accordingly (Fig. 2). The obtained 
data testify to the fact, that the genes having different intron number and located in 
different gene density regions have no the same exon-intron organization. The tendency 
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of increasing the number of intron in a gene, and the sum of exon lengths increased, 
testify to correcting function of introns on while unknown gene properties.  

 

Figure 2. Variation of exon lengths in genes of the chromosome 1 (a) and chromosome 13 (b): ■ – exons 
lengths in 1–2 introns genes;  ● – exons lengths in genes with 15 and more introns. x-axis – exon lengths, 
nt;  y-axis – share exons, %. 

REFERENCES 

Venter J.C., Adams M.D., Myers E.W. et al. (2001) The sequence of the human genome. Science, 291, 
1304–1351. 

Duetsch M., Long M. (1999) Intron-exon structure of eukaryotic model organisms. Nucl. Acids Res., 27, 
3219–3228. 

Ivashchenko A., Atambaeva S. (2004) Variation in lengths of introns and exons in genes of the 
Arabidopsis thaliana nuclear genome. Rus. J. Genet., 40, 1179–1181. 

 



Computational structural and functional genomics and transcriptomics 35
 
Chapter # 

THE EXON AND INTRON LENGTHS  
IN ARABIDOPSIS THALIANA  
AND CAENORHABDITIS ELEGANS GENES  

Atambaeva S.A., Ivashchenko A.T.*  
al-Farabi Kazakh National University, Almaty, 050038, Kazakhstan  
* Corresponding author: e-mail: a_ivashchenko@mail.ru  

Key words:  exon, intron, gene, genome, A. thaliana, C. elegans 

SUMMARY 

Motivation. The variability of intron lengths and intron numbers in genes of various 
organisms is very different and detection of exon-intron regularity requires investigation 
of the gene organization. It is necessary to elucidate exon-intron structures of genes of 
various genomes for clearing up biological role of introns. 

Results. The number of introns in a gene is proportional to the sum of exon lengths 
and length of genes in A. thaliana and C. elegans genomes. The changes of exon and 
intron lengths in A. thaliana and C. elegans genes possess features depending on intron 
number in genes and a gene density of DNA.  

INTRODUCTION 

Genomes of C. elegans, A. thaliana, D. melanogaster, O. sativa, H. sapiens and other 
eukaryotes have more than 85 % genes with introns. There is the considerable 
heterogeneity of exon and intron lengths, which promotes detection of variability of exon 
and intron lengths regularities in the genomes of these organisms (Duetsch, Long, 1999). 
In different organisms the intron number in genes, a ratio between exon and intron 
lengths, the number of genes with introns, etc. variate. The purpose of the present work is 
investigation of relationship between intron number in genes, exon and intron lengths, a 
gene density of DNA all chromosomes of A. thaliana and C. elegans.  

METHODS 

Nucleotide sequences of DNA of A. thaliana and C. elegans genomes have been 
extracted from GenBank (http://www.ncbi.nlm.nih.gov/). Genes of each chromosome 
containing 1, 2, 3, 4, 5, 6–10, 11–15, 16 and more introns were divided into groups. The 
intron and exon lengths, the sum of exon lengths and gene lengths in these groups have 
been determined. A frequency of occurrence of intron and exon lengths have been 
analyzed in the ranges 1–20, 21–40, 41–60 nt up to 400 nt as well as more than 400 nt. 
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RESULTS 

The share of one intron genes in all chromosomes of A. thaliana was about 20 %. If 
intron number in genes increased, the share of such genes decreased. The genes with  
11–15 intron genes were less than 1 %. One intron genes of C. elegans were about 10 % 
and the share of genes containing more intron number (2, 3, 4 and 5) gradually increased 
to14 % and then sharply decreased for genes containing 6 and more introns. The sum of 
exon lengths was 76–80 % (A. thaliana) and 63–74 % (C. elegans) in one intron genes 
and that was 46–50 % and 36–40 % in 11–15 intron genes accordingly. The correlation 
between changes exon lengths, intron lengths and intron number in A. thaliana genes 
have been established. The exon and intron lengths decreased if intron number increased. 
The intron number was proportional to the sum of exon lengths or gene lengths with high 
correlation coefficient (r) in genes of A. thaliana and C. еlegans (Fig. 1). 

 

Figure 1. The correlation between exon lengths sum (▲), gene lengths (●) and intron numbers in genes 
of A. thaliana chromosome 4 (a) and C. еlegans chromosome II (b). x-axis – gene lengths and exon 
lengths sum, nt; y-axis – intron numbers in genes. 

These dependencies were described by the following equations: Nin = aLex + b and  
Nin = cLgn + d accordingly where Nin is intron number in a gene, Lex is exon lengths sum, 
Lgn is gene length, a, b, c and d are parameters of a linear regressions. Magnitudes of 
these parameters are given on Table 1. The received data testify to the relationship 
between exon lengths sum, genes lengths and changes of intron numbers in both 
organisms at increasing of intron numbers in genes. The high correlation coefficients 
between change of exon and intron lengths have been observed for A. thaliana: Lin = mLex + n 
(Table 1). This regularity was similar for genes of all A. thaliana chromosomes. Such 
kind of correlation was missing in C. elegans genes (Table 1).  

The gene number of a double-stranded DNA region of 0.3Mbp length varied from 8 to 
99 for A. thaliana and from 26 to 110 for C. elegans. The relationship was similar 
between changes of A. thaliana gene lengths, exon lengths sum and intron numbers at the 
density of 86 and 27 genes/0.3Mbp consequently:  

Nin = 0.0119Lex-9.59; r = 0.939; p < 0.001 и  Nin = 0.0051Lgn – 5.06; r = 0.993; p < 0.001;  
Nin = 0.0066Lex-3.00; r = 0.987; p < 0.001 и Nin = 0.0034Lgn – 2.97;  r = 0.991; p < 0.001. 
Intron lengths were 4 times less in genes from the high gene density regions (99 

genes/0.3Mbp), than intron lengths of genes at low gene density regions (38 
genes/0.3Mbp) in C. elegans genome. The relationships between changes of gene lengths, 
exon lengths sum and intron numbers were different at the density of 86 and 27 
genes/0.3Mbp:  

Nin = 0.0057Lex – 2.6, r =0.994, p < 0.001 and Nin = 0.0029Lgn – 1.12, r = 0.997,  
p < 0.0005; 

Nin = 0.0039Lex – 0.7, r = 0.997, p < 0.0005 and Nin = 0.0008Lgn – 1.04, r = 0.992,  
p < 0.001. 

The average gene lengths and ratio of exon and intron lengths were the same in C. 
еlegans regions containing the close gene numbers (63÷65 genes/0.3Mbp) with the 
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different GC-content (39 % and 34 %). Neither GC-content nor gene density didn’t 
influence on the ratio of exon and intron lengths in A.thaliana genome, although regions 
were different 7 times by a gene density.  

Table 1. The parameters of correlation of gene lengths, exon lengths sum and intron number; exon 
lengths and intron lengths of C. elegans and A. thaliana genes 

Parameters Parameters Chromo-
some a b r p c d r p 
 C. elegans 
I 0.0045 -0.94 0.998 <0.0001 0.0018 -0.41 0.999 <0.0001 

II 0.0049 -1.29 0.997 <0.0005 0.0018 -0.01 0.998 <0.0001 
III 0.0040 -0.28 0.991 <0.001 0.0015 -0.37 0.997 <0.0005 
IV 0.0046 -0.84 0.995 <0.001 0.0017 -0.04 0.999 <0.0001 
VI 0.0051 -1.54 0.996 <0.001 0.0018 -0.18 0.995 <0.001 
X 0.0057 -1.27 0.997 <0.0005 0.0023 -0.71 0.999 <0.0001 

               A. thaliana 
1 0.0087 -6.83 0.994 <0.001 0.0036 -3.21 0.997 <0.0005 
2 0.0084 -6.22 0.987 <0.001 0.0038 -3.41 0.995 <0.001 
3 0.0088 -6.55 0.995 <0.001 0.0037 -3.08 0.998 <0.0001 
4 0.0084 -6.93 0.999 <0.0001 0.0037 -3.70 0.999 <0.0001 
5 0.0099 -8.03 0.998 <0.0001 0.0042 -3.99 0.999 <0.0001 

           A. thaliana C. elegans 
Chr. m n r p Chr. m n r p 
1 0.34 106 0.987 <0.001 I 0.25 287 0.172 >0.1 
2 0.43 87 0.996 <0.001 II -0.41 370 -0.312 >0.1 
3 0.25 120 0.960 <0.01 III 0.10 316 0.061 >0.1 
4 0.42 100 0.956 <0.01 IV -0.57 429 -0.352 >0.1 
5 0.37 87 0.995 <0.001 V -0.64 402 -0.528 >0.1 
     X -0.66 386 -0.618 >0.05 

 
The exon and intron length varied specifically in the intervals of 1–400 nt length and 

more than 400 nt for all A. thaliana gene groups. The share of exons with more than 400 
nt length was 5 % in chromosome 1 genes containing 1–15 introns, i.e. 9 times less, than 
in one intron genes (44 %). The share of exons with the length from 60 to 180 nt 
increased from 23 % to 76 % (Fig. 2a).  

The shares of introns with the length from 80 to 120 nt were 40 % in one intron genes 
and 68 % in 11–15 intron genes. The shares of introns with length more than 400 nt were 
20 % and 5 % accordingly (Fig. 2b). While exon number increasing in genes, a 
redistribution of the intron lengths was the result of reduction of intron share with length 
more than 400 nt and increasing of its number for an interval from 80 to 120 nt without 
change of the intron share in the intermediate intervals of lengths. The intron share for a 
length from 140 to 400 nt was similar: 26÷35 % in genes of all A. thaliana chromosomes.  

The share of exons with length more than 400 nt decreased, when the intron number in a 
gene increased and the share of exons with length from 60 to 180 nt increased 
simultaneously too in genes of all C. elegans chromosomes. The share of exons with length 
more than 400 nt was 19 % in one intron genes and 9 % in 11–15 intron genes.  Thus the 
share of exons with length from 60 to 180 nt increased from 46 to 60 % in chromosomes IV 
(Fig. 2c). The intron lengths didn’t depend on intron numbers in C. elegans genes (Fig. 2d). 

The recieved data show that the exon-intron organization wasn’t the same for genes 
containing various intron numbers and located in the different chromosome regions. The 
clearly expressed regularity testify to correcting role of introns for unknown gene 
features, because intron number increased when the exon lengths sum increased. 
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Figure 2. Variation of exon and intron lengths in genes of A. thaliana chromosome 1 (a, b) and of  
C. elegans chromosomes IV (c, d): a – exons of one intron genes (-●-) and of 11–15 introns genes (-■-);  
b – introns of one intron genes (-●-) and of 11–15 introns genes (-■-); c – exons of one intron genes (-●-) 
and of 11–15 intron genes (-■-); d – introns of one intron genes (-●-) and of 11–15 intron genes (-■-).  
x-axis – exon and intron lengths, nt; y-axis – share of exons and introns, %. 
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SUMMARY 

Motivation: Recently, a set of highly Conserved Non-coding Elements (CNE’s) was 
derived from a Fugu-human genome comparison. We characterise some statistical 
features common to these elements in order to facilitate their identification in silico. 

Results: We found a pronounced pattern around the borders of CNEs: GC-rich 
flanking regions of low entropy compared to AT-rich, high entropy sequences within the 
borders. We also identified the most abundant significant motifs inside and adjacent to the 
borders of CNE’s. At the borders, motifs are significantly clustered which points to their 
possible role as binding sites. 

INTRODUCTION 

Only around 1.2 % of human DNA is known to be coding for proteins. Our knowledge 
of the role and location of other elements is limited and new types of sequences of 
unknown function are still discovered.  Recently, several sets of highly conserved non-
coding sequences have been identified in vertebrate genomes (Woolfe et al., 2004; Bofelli 
et al., 2005; Dermitzakis et al., 2005). A combination of comparative genomic studies and 
laboratory experiments has shown that these conserved non-coding elements (CNEs), 
most of which are more conserved than protein-coding exons, may be regulatory elements 
(Moses et al., 2005; Xie et al., 2005).  

Conserved regulatory regions have been the objects for motif discovery by phylogenetic 
foot-printing algorithms (Blanchette, Nompa, 2002). However, most efforts been related to 
the promoter motifs (FitzGerald et al., 2004) and although CNEs appear to have striking 
“signatures” (Walter et al., 2005), little motif discovery has been done for CNEs.  

Here, we focus on the motif identification and statistical characterization of the CNEs 
collected by Woolfe et al. (2004 ). Based on a  MEGABLAST comparison between 
human and pufferfish (Fugu ribripes) genomes, they identified about 1400 highly 
conserved non-coding sequences. Most of these sequences are located in and around 
developmental regulation genes and when some of them were tested in the laboratory, 
they appeared to drive tissue-specific gene expression in early development (Woolfe et 
al., 2004). These facts encouraged us to consider CNEs as putative regulatory regions, 
namely enhancers, and to check whether they could be characterised by some of the basic 
statistical properties of regulatory regions such as the abundance (Papatsenko et al., 2002) 
and the typical spatial distribution (FitzGerald et al., 2004) of binding motifs. 
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MATERIALS AND METHODS 

The set of CNEs identified by Woolfe et al. (2004) contains 1373 elements, vary in 
size from 53 bp to 740 bp (mean length 200 bp) and a level of conservation is from 68 % 
to  
98 % identity. We use this data set to build up a CNE lexicon, and check for presence of 
statistical properties typical of cis-regulatory regions. To characterise CNE borders, we 
generated two positive data sets of 5′ and 3′ CNE flanking regions of 50 bp each (upCNE 
and CNEdown) from the 1231 CNEs which are longer than 100 bp. 

Likelihood of motifs. It is known that certain sequences that operate as “binding 
motifs” are surprisingly abundant within regulatory regions. Given the DNA composition 
of a region, the globally most abundant motifs may be defined as those that are most 
likely to occur. In the work reported here, we determined the motifs in the CNE-flanking 
alignments with the highest likelihood. We will show that these motifs are more abundant 
than expected due to the composition of the upCNE and downCNE regions.To do so, we 
generated a large number (10000) of “surrogate” alignments with the same position-
dependent composition as the CNE alignment under consideration by randomly shuffling 
the original sequence 10000 times. Next, Z-scores of words from the original lexicon 
were calculated as standardized deviations from the mean frequency (of the same words) 
of the randomised alignments. Words from the original CNE alignment are defined as 
significant if their Z-score exceeds 2 standard deviations 

Spatial Distribution (clustering) of Words. Some words, not necessarily the most 
frequent in the CNE alignments, could be functionally important as binding sites and 
could therefore be clustered around CNE borders. We use the local frequency of words 
(i.e. within columns) in the alignment to determine their degree of clustering. To assess 
the statistical significance of word clustering, the clustering coefficient, CC, is defined for 
each word xi in each start position j and sequence (we omit the indexing of sequence for 
simplicity) as 
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j xN is the occurrence of word xi 

starting in position j, ( )iN x  is the mean frequency (i.e. of ( )j
iN x ) over all positions j in 

the alignment, and ( )ixσ  is the standard deviation of ( )j
iN x . A word xi is significantly 

locally clustered (or anti-clustered) in position j, if |CCj(xi )| > 2. 
Compositional homogeneity. While aligning CNEs, we had the impression that the 

flanking regions vary stronger in composition than the CNEs themselves. We estimated 
the di-nucleotide entropy separately in each 50 bp flanking region and each 50 bp CNE 
sequence of the alignments as a quantitative measure for their compositional diversity. In 
previous work, we have shown that the entropy of regulatory regions is intermediate 
between that of coding (highest entropy) and non-coding, non-regulatory regions (lowest 
entropy) (Orlov et al., 2006). 

Sequential persistence. We used the Hurst exponent as a measure of the stationarity 
of the DNA sequence around the CNEs border. The Hurst coefficient was calculated by 
Rescaled Range Analysis. We applied this method by transforming a DNA sequence into 
a binary code of x k = +1 for k = G, C and x k = -1 for k = A, T (Orlov et al., 2006). In 
case of random, identical and independent occurrences of nucleotides in DNA, H equals 
0.5. A high Hurst exponent (> 0.5) points to extensive autocorrelations (i.e.  non-
stationarity). A series that contains a significant change in composition is therefore 
expected to be characterized by H > 0.5. In previous work, we have shown that the Hurst 
exponent of regulatory regions (H ~ 0.62) is intermediate between that of coding (H < 0.5, 
indicating anti-persistence) and non-coding, non-regulatory regions (H ~ 0.67) (Orlov 
 et al., 2006). 

To statistically characterise the CNEs and their borders, we calculated Entropy and 
Hurst exponent between the following regions. For entropy: 50bp upstream flanking 
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regions, the first- and last 50 base pairs of the CNE itself and 50 bp downstream flanking 
regions.  The entropy values of these stretches were compared to sequences (50 bp long) 
of randomly picked non-coding, non-regulatory DNA in Fugu. For the Hurst exponent: an 
upper CNE bordering region containing the first 50 base pairs before and after the CNE 
start position  and a lower CNE bordering region consisting of the last 50 base pairs of a 
CNE and the first 50 base pairs after the stop-position of that CNE. We compared Hurst 
exponent values of the two bordering regions with those of randomly selected non-
coding, non-regulatory DNA within the same window length as the aligned CNEs. 

RESULTS 

We aligned the highest scoring significant words (of length 12 here) with respect to 
their start positions in columns, and put them into to WebLogo format (Crooks et al., 
2004). The “logos” of these over-represented words are shown in Fig. 1. The lowest 
scoring words are visualized in Fig. 2. As one can see from Fig. 1–2, over- and under- 
represented words are AT rich and CG poor respectively and their start positions appear 
to cluster close to the CNE borders. 

   

Figure 1. Left: highest scoring 12-mers in CNEdown, the CNE border is at position 50. Right: high 
scoring 12-mers in upCNE, the CNE border is at position 51. 

  

Figure 2. Left: lowest scoring  12-mers in CNEdown, the CNE border is at position 50. Right: lowest 
scored 6- and 12-mers in upCNE, the CNE border is at position 51. 

We found that there this clustering (CC > 2) of certain short patterns around the CNE 
borders is significant. This is shown in the plot of start-positions of significantly large 
clustering coefficients (> 2) along the alignment (Fig. 3). 

The average entropy of upstream and downstream flanking regions (both E = 2.43) is 
significantly lower than that of regions within the CNE border (both E = 2.52) 
(Newmans-Keuls ad hoc comparisons after a 1 way repeated measurement ANOVA 
within sequences. A Friedman test – as a non-parametric alternative to the repeated 
measurement ANOVA – backed up the results). The entropy of non-coding, non-
regulatory regions (E = 2.49) is significantly higher than that averaged over the two 
flanking regions (t-Test: t = 8.52, df = 2460, p < 0.0001) and significantly lower than that 
averaged over the two within CNE regions (t-Test: t = 5.82, df = 2460, p < 0.0001). 
Mann-Whitney U tests, as non-parametric alternatives to the parametrical t-Tests 
demonstrated a significant difference between the non-coding, non-regulatory DNA on 
the one hand and the combined ( = averaged) data of the two flanking regions on the other 
hand, but not with the combined (averaged) within CNE sequences.   
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Figure 3. The clustering of four mers around the upCNE border,  at position 50 bp. The vertical axis 
shows modified CC (= sign(CC)*CC2) for visualization purposes. The horizontal axis shows position in 
the upCNE alignment.  

The Hurst exponents between upper and lower bordering regions (respectively H = 
0.65 and 0.66) do not differ significantly, but do so between the values of each of the two 
bordering regions and those of non-coding, non-regulatory regions (H = 0.59) (Newmans-
Keuls ad hoc comparisons after a 1 way ANOVA on log-transformed data). Together, 
these results point to a change in composition at the borders of CNEs. 

DISCUSSION AND CONCLUSION 

We have showed that the motifs around CNE borders are not just the consequence 
of compositional bias. In addition, we identified the following statistical “signatures” of 
CNEs: (i) the sequences around CNE borders are surprising rich in globally and locally 
over-represented motifs; (ii) CNE borders appear to correspond to a pronounced 
change-point in composition; (iii) flanking CNE sequences have low entropy and are 
CG rich whereas the CNE themselves are AT-rich, and have a higher entropy compared 
to the flanking regions. Although it has been put forward that some CNEs might be 
matrix attachment regions (Glazko et al., 2003) or participate in inter-chromosomal 
interactions (Muller, Schaffner, 1990), due to their statistical properties CNEs might 
indeed function as regulatory regions. They contain more statistically significant 
abundant words than expected by chance, many words are clustered close to their start 
positions and their entropy is on average 2.52, i.e. in between that of typical coding 
regions (~2.68, refs) and non-coding, non-regulatory regions (2.48). These findings 
corroborate evidence in the literature (Hardison, 2000; Nobrega et al., 2003). The most 
significantly clustered motifs could be candidates for TFBS cores. Note that some 
words are rarer than expected (anti-clustered) near the border (Fig. 3). They could be 
candidates for under-represented TFBS binding sites. Comparison with randomly 
picked non-coding non-regulatory (NCNR) DNA revealed that in the latter locally 
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highly clustered motifs are fairly uniformly spread over alignments, in contrast to the 
clustering around the borders of CNEs, which is typical for regulatory regions 
(FitzGerald et al., 2004).  
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SUMMARY 

Motivation: Microarray technology provides a massively parallel means to study gene 
expression on a global scale. There are many challenges associated with the analysis of 
microarray data due to its inherent complexity and high dimensionality. Although there is 
a diverse range of analytical techniques available for finding groups in gene expression 
data, clustering and partitioning are currently the key areas of microarray data mining. 
Combining the analytical techniques could provide new ways to improve grouping quality 
and interpretability. 

Results: We applied the method of principal components to a united sample of gene 
expression profiles, presented by Borovecki et al. (2005), and the centers of SOM clusters that 
we calculated. This allowed us to give a meaningful interpretation to the clusters obtained. 

INTRODUCTION 

The Kohonen’s self-organizing maps (SOM analysis) are among the methods widely 
used for analyzing microarray data (Kohonen, 1997). The essence of the method is a 
nonlinear transformation of a set of dots representing, for example, gene expression 
profiles from a space of a large dimension to a space of a small dimension with 
concurrent clustering of the dots (Tamayo et al., 1999; Hand and Heard, 2005). However, 
regarding the centers of SOM clusters as new dots in the initial space brings about an 
interesting new possibility to analyze their layout among the initial set of dots. 

For this purpose, we propose to apply the principal components analysis (PCA). This 
method as a variant of the projection methods used for analysis of microarray data is 
sometimes also called singular value decomposition (SVD; Alter et al., 2000; Wall  
et al., 2001). 

The PCA applied to a united sample of gene expression profiles and centers of SOM 
clusters allows for a meaningful interpretation of the clusters obtained, thereby assisting 
the understanding of the potential and results of SOM analysis. 
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MATERIAL AND METHODS 

A massive of microarray expression data obtained using GE Codelink Human Uniset 
I, II, and 20K (GPL1449) microarrays. Upon filtration procedure (the empty lines were 
removed), the massive contained 17 526 complete gene expression profiles (lines) from 
31 samples of the peripheral blood (columns: 12 patients with Huntington’s disease, 5 
presymptomatic individuals, and 14 normal cases; Borovecki et al., 2005). The files with 
these experimental data as a set of GDS1332 data were extracted from the GEO database 
(Barrett et al., 2005; http://www.ncbi.nlm.nih.gov/geo/). 

The centering and normalization were performed by our own program. 
The program Cluster 3.0 (de Hoon et al., 2004) was used to perform the SOM and the 

PCA procedures. 
The software package STATISTICA 6.0 was used for visualization. 

RESULTS AND DISCUSSION 

Upon a logarithmic transformation, the data massif was centered and normalized over 
the columns to eliminate nonuniformity within the samples and over the lines to remove the 
scale effects. Due to such transformation, all the dots are located on the surface of a 30-mer 
sphere (one degree of freedom disappears due to centering). According to the SOM 
algorithm, 30 centers of clusters were created and 1 000 000 iterations of approximation of 
these centers to the clusters of initial dots were performed followed by centering and 
normalization of these centers. 

The set of initial dots supplemented with the set of SOM cluster centers were 
processed as a single sample by principal components analysis. The first three 
components together gave 26.23 % of the total variance. Fig. 1 shows the arrangement of 
samples on the plane of the first and third eigenvectors. 

Fig. 2 demonstrates the arrangement of gene expression profiles and SOM cluster 
centers on the plane of the same principal components as well as locations of the profiles 
for 12 genes—markers of Huntington’s disease selected based on the results of 
confirming real-time PCR experiments from 322 genes that displayed the most significant 
and pronounced differential expression between the groups of patients and healthy control 
in microarray experiments (Borovecki et al., 2005). 

All the 12 marker genes fell into two SOM clusters (2nd and 12th), forming a rather 
tight group. The centers of these clusters fell into virtually the same dot on the plane of 
the first and third principal components. As is evident from Fig. 1, these components are 
responsible for the differences between the patients with pronounced disease symptoms 
and healthy individuals. Note that the distinctions between clusters 2 and 12 manifest 
themselves in the second principal component (8.65 % of the total variance; data not 
shown), which is responsible for the deviation of presymptomatic patients from both the 
norm and Huntington’s disease cases.  

Presumably, the group of candidate marker genes for Huntington’s disease may be 
expanded considerably with all the genes whose profiles are located near the centers of 
these clusters, thereby increasing the sensitivity and reliability of diagnostics of various 
Huntington’s disease states. 

Thus, the PCA applied to united sample of gene expression profiles and centers of SOM 
clusters allows for visualizing the location of SOM clusters and their centers among the rest 
set of objects as well as obtaining a meaningful interpretation of the clusters obtained. Both 
possibilities assist essentially the understanding of SOM analysis potential and results. 
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Figure 1. Arrangement of the objects on the plane of the first and third eigenvectors. 

 

Figure 2. Arrangement of gene expression profiles and SOM cluster centers on the plane of the first and 
third principal components. 
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SUMMARY 

Motivation: Using methods based on those of molecular biology isolating and 
sequencing of DNA and proteins is possible. This data must be stored using specific 
database systems which must be available via the internet. The reason to require an efficient 
implementation of these database systems is the exponential increase of their entries.  

Results: In this paper we define an extended Backus-System which will allow an 
efficient representation of this data. Furthermore, important topics like the “complexity of 
life” can be discussed using this new formal representation. 

INTRODUCTION 

The structured storage of the sequenced biological data, the analysis of this data, and 
the availability of this data (deoxyribonucleid acid and proteins) requires the methods of 
computer science (Tanaka, 1992). The main tasks are to develop new database systems 
and efficient algorithms for the analysis of this data. Moreover, computer scientists have 
to support the usage of supercomputers. The electronic analysis of biological data is based 
on a suitable representation and implementation of this data. A well known method is the 
application of formal languages which was introduced by (Brendel, Busse, 1984). They 
used chomsky type-3 languages to describe biological data. The application of formal 
languages was extended by (Collado-Vides,1991), when he introduced the description of 
DNA functional units. In this paper we will discuss the grammatical formalization of 
nucleic acid. For this Brendel and Busse suggested regular expressions. However, this 
formalization is not able to satisfy all there requirements. Today it is known that any 
DNA sequence of any functional unit can be characterized by its specific lenght. 
Moreover, in any DNA functional unit sequence variations can appear which are based on 
the redundancy of the genetic code. Chomsky grammars are not able to express these 
specific features of each functional class. This is a reason for using an expanded version 
of the Backus-System. 

GRAMMARS 

A chomsky type-0 grammar is given by a quadrupel G = (Φ, Σ, P, A) (Maurer, 1977). 
Φ and Σ are finite alphabets with Σ ∩ Φ = ∅ and Φ ∪ Σ = Γ. The elements of Φ are called 
variable symbols and the elements of Σ are called terminal symbols. P denotes the set of 
all rules and the variable symbol A is called the axiom. P is a finite set of ordered pairs of 
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Γ*. (Γ,P) is called production system. For each rule (u,v) ∈ P u contains one or more 
variable symbols. For two words w,y ∈ Γ* we say that w could be derivated into y, in 
symbols w => y, iff    z1, z2 ∈Γ*  w = z1uz2 and y=z1vz2 and (u,v) ε P. w => y is called 
one-step derivation from w into y. Let w,y ∈ Γ*, we call w derivable into y, in symbols w 
=>* y, if there exists a sequence of words w0, ..., wn ∈ Γ* (n>1) which represents the 
following one-step derivations w = w0 => ... wn-1 => wn. A sequence w1, .., wn is called 
derivation of the length n. L(G) = { x | x ∈ Σ* and A =>* x } is the set of all words which 
are derivable from the axiom A. L(G) is called rule based language. A rule is called 
linear, if it is of the form  A → x By with A,B ∈ Φ and x, y ∈ Σ*. A rule is called right-
linear (left-linear), if the rule is of the form A → xB (A → Bx). A rule is called closed, if 
it is of the form A → x. A grammar is called left-linear (right-linear), if every rule is left-
linear (right-linear) or closed. A grammar is called type-3 grammar, if every rule is right-
linear or left-linear. A Backus-System is a type-3 grammar (Gardner et al., 1991). In the 
case of Backus-Systems each variable symbol is surrounded by brackets < and >. 
Moreover, there are specific syntactic symbols: ::= - the symbol for the definition process 
and | - the “or” symbol between sub strings. 

EXPANDED BACKUS-SYSTEM 

The specification of any nucleotide sequence is based on the following features: every 
functional unit has a specific length and many functional units are characterized by a 
specific frequency of sub-sequences. Therefore, it is necessary to expand the Backus-
System in order to realize the formalization of these features. First of all we define an 
operator which will allow the usage of a specific rule for x times (k ≤ × ≤ k'). Let be  
i = 1..p, j = 1..q, αi, ßi, χj ∈ (Φ-{A} ∪ Σ)* and k≤k' with k, k', p, q ε IN. The following 
syntactic extension expands the Backus-System:  

(k:k') <A> ::= α1 <A> ß1 | ... |  αp <A> ßp 
<A> ::= χ1 | ... | χq 
The signification of this extension is defined as follows: 
- <A> ::= <A≈k'> | <A≈k'-1> | ... | <A≈k> 
  where <A≈i> for i = k..k' are new variable symbols and 
- <A≈i> ::= α1 <A≈ (i-1)> ß1 | .... | αp <A≈i-1> ßp 
  <A≈0> ::= χ1 | ... | χq    
where <A≈i> for i = 0..k are new variable symbols. 
Notation: (k:k') is called the derivation-frequency of the rule. In the case of (k:k) we 

can also use the shorter description (k).  
Today many different promoter units are isolated and sequenced. The analysis of this 

data reveals its features (Gardner et al., 1991). This features of the promoter sequence can 
be defined with the expanded Backus-System: ({Promoter, Pribnow-box, AT_P, GC_P, 
AT, GC, SEQ, SEQN}, {A,T,G,C}, R, Promoter) 

<Promoter> ::= <GC_P> <AT_P> <SEQ> <Pribnow-box> <SEQN> 
(11) <AT_P> ::= <AT> <AT_P> | <GC> <AT_P> ,  <AT_P> ::= A | T 
(11) <GC_P> ::= <GC> <GC_P> | <AT> <GC_P> 
<GC_P> ::= G | C <AT> ::= A | T  <GC> ::= G | C 
(5) <Pribnow-box> ::= <AT> <Pribnow-box> | <GC> <Pribnow-box> 
<Pribnow-box> ::= <AT> | <GC> 
(11) <SEQ> ::= <AT> <SEQ> | <GC> <SEQ>,   <SEQ> ::= <AT> | <GC> 
(21) <SEQN> ::= <AT> <SEQN> | <GC> <SEQN>,<SEQN> ::= <AT> | <GC> 
In order to realize the second demand it is necessary to expand the definition of the 

derivation which will allow us to choose sub-rules. Let p,p',q,q' ε IN+ and p/q ≤ p'/q'. The 
addition rule is given by: 
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<C> ::= <A> <C> | <B> <C> (p/q,p'/q') which means: 
If we use this rule in a derivation then the probability of the application of  
<C> -> <A> <C> is x with p/q ≤ x ≤ p'/q'. 
The meaning of this construct is: any word w belongs to the described language, if  
1)  there exists a derivation into w (in the sense of the old definition); 
2) w represents a right-derivation with the following property: if we apply a rule of 

our new class to a derivation (<C> ::= <A> <C> | <B> <C>) then we have to consider the 
decomposition of the right derivation into S =>* α<C>x =>* αyx =>* w. αyx arises from 
the last application of a rule whose right side is different from C. In this case:  p/q * #(y) 
≤ #A(y) ≤ p'/q' * #(y) and #A(y) denotes the frequency of the appearance from A into y. 

Moreover, we can also combine the described extensions of the Backus-System. 
Example: representation of the promoter sequence using an extended Backus-System 
({Promoter, Pribnow-Box, AT_P, GC_P, AT, GC, SEQN}, {A,T,G,C}, R, Promoter) 
<Promoter> ::= <GC_P> <AT_P> <SEQ> <Pribnow-box> <SEQN> 
(11) <AT_P> ::= <AT> <AT_P> | <GC> <AT_P> (6/7,1),  <AT_P> ::= A | T 
(11) <GC_P> ::= <GC> <GC_P> | <AT> <GC_P> (6/7,1) 
<GC_P> ::= G | C <AT> ::= A | T <GC> ::= G | C 
(5) <Pribnow-box> ::= <AT><Pribnow-box> | <GC><Pribnow-box> (6/7,1) 
<Pribnow-box> ::= <AT> | <GC> 
(11) <SEQ> ::= <AT> <SEQ> | <GC> <SEQ>,   <SEQ> ::= <AT> | <GC> 
(21) <SEQN> ::= <AT> <SEQN> | <GC> <SEQN>,<SEQN> ::= <AT> | <GC> 

APPLICATION 

The previous section shows how to describe nucleic acid using expanded Backus-
Systems. The presented formalization allows the specification of DNA functional units. 
However, if we know a set of sequences for any DNA functional class we are able to 
calculate the features of this class with statistical methods. These features can be 
expressed using the expanded Backus-System. As an example for further analysis based 
on this formalization we will discuss the complexity of nucleic acid. This example 
belongs to the research field of sequence analysis. It has been observed that the classical 
complexity measures are inadequate for the purpose of characterizing biological 
complexity. Therefore, (Atlan, Koppel, 1990) introduced a new measure of “meaningful 
complexity” which they called sophistication. It was developed by modifying the classical 
(Kolmogoroff, 1965) program-length complexity. The program-length complexity of an 
object is the length of the shortest description of that object. Thus, objects which are 
completely characterized by some simple properties have low complexity. Objects which 
have no characterizing properties, and can therefore be described only by enumeration are 
maximally complex, and are called “random”. This definition uses the distinction between 
two different parts of a description of an object. The first part consists of its properties. 
This set of properties constitutes the object's structure. This structure might in fact be 
common to a whole class of objects; thus we regard a given structure as defining a class 
of objects. The second part of an object's description consists of the specification of the 
object from among the class of objects defined by its structure. Our expanded Backus-
System allows the specification of DNA functional units. Furthermore, we can easily 
define a complexity measure: 

The value of a rule is given by the multiplication of its frequency number (1, if there 
is no frequency number) and the number of its sub strings on the right side of the rule. 
The sum of all values of all rules which belong to the Backus-System is called complexity 
of the Backus-System. 

Example: Consider a hypothetic functional unit class, which is characterized by the 
following sequence: an AT-rich sequence (20 bp) which is followed by the sequence 
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ATTA and a GC-rich sequence (10 bp). This sequence could be specified by the 
following expanded Backus-System: <EXAMPLE> ::= <AT> <SEQ> <GC> 

(19) <AT> ::= <AT> T | <AT> A,   <AT> ::= T | A 
(9) <GC> ::= <GC> G | <GC>C,   <GC> ::= G | C 
(3) <SEQ> ::= A <SEQ> | T <SEQ> | C <SEQ> | G <SEQ>, <SEQ> ::= A | T | G | C 
The complexity of this Backus-System is 71. Therefore, the complexity of the 

specified promoter sequence (see previous section) is 125. 
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SUMMARY 

Motivation: Methods that accurately predict transcription factor binding sites (TFBS) 
have always been important tools in studying the regulatory regions of eukaryotic genes. 
It is therefore important that more new high-performance methods for TFBS prediction be 
developed and their accuracy, assessed using experimental data. 

Results: Using a new technique, SITECON, potential binding sites for the 
transcription factor SF-1 have been predicted in the 5′-flanking regions of a range of 
vertebrate steroidogenesis genes, for which it was unknown weather or not SF-1 
participate in the regulation of their expression. A high predictive capacity of SITECON 
was proved by experimental verification: the predicted sites were all shown to be able to 
bind to SF-1 in vitro. Most of them are found at positions, which are similar to those at 
which known SF-1 binding sites with an experimentally proven functionality are located 
in the genes of other species. The new genes that we have thus detected are in fact 
potential targets for SF-1 and are perceived to be promising candidates for further 
experimental verification.  

Availability: http://wwwmgs.bionet.nsc.ru/mgs/programs/sitecon. 

INTRODUCTION 

Computer-based methods that predict binding sites for transcription factors are some of the 
most promising approaches, which it is believed can unravel the regulatory code of DNA. 
Statistical analysis of sample transcription factor binding sites allows their common contextual 
and context-dependent properties used for prediction of potential binding sites to be revealed. 
We have recently described SITECON (Oshchepkov, 2004a) (http://wwwmgs.bionet.nsc.ru/ 
mgs/programs/sitecon/), our new development for determining the conservative context-
dependent conformational and physicochemical properties of in transcription factor binding 
sites alignments. The properties so determined can be efficiently used for enhancement of 
binding site prediction accuracy. We have previously demonstrated how the method works on 
the binding sites for heterodimeric complex E2F/DP (Oshchepkov, 2004b). The discovered 
specific conservative properties for a set of these binding sites reflect the molecular 
mechanism of the heterodimer-DNA interaction.  
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We herein demonstrate SITECON performance on transcription factor SF-1 binding 
sites. The transcription factor SF-1 belongs to the family of nuclear receptors and binds to 
DNA as a monomer (Val et al., 2003). This factor plays a key role in the transcriptional 
regulation of steroidogenesis genes and is required for normal development of the 
hypothalamic-pituitary-adrenal and gonadal complexes (Busygina et al., 2003; Val et al., 
2003). Experimental verification of SITECON predictions was performed and the location 
of the predicted sites was compared to the location of the functional SF-1 sites in the 
orthologous genes; the descriptions to these functional sites were taken from the literature. 

METHODS AND ALGORITHMS  

Nucleotide sequences of SF-1 binding sites and 5′-flanking regions. The training 
sample comprised the nucleotide sequences of 54 experimentally identified SF-1 binding sites 
retrieved from the TRRD database (Kolchanov et al., 2002). We were searching 5′-flanking 
regions of genes in two groups: а) 33 steroidogenesis genes with no experimental evidence for 
SF-1 binding sites in their regulatory regions; b) genes orthologous to those in first group that, 
according to TRRD, contain experimentally identified binding sites for SF-1.  

SITECON. As the detection threshold, SITECON employs conformational similarity 
(Oshchepkov et al., 2004a), which was 94 % for SF-1. The sensitivity to type I errors was 
assessed using the jack-knife method: sequences were removed from the training sample 
one by one each in a series of iterations and served as controls. Type II errors were 
assessed based on the number of binding sites predicted to be present in a negative 
sequence 500,000 bp in length. That negative sequence was generated by random 
shuffling of the nucleotides of the sequences in the training sample; thus, the nucleotide 
compositions of both the positive and negative samples were identical and the search was 
made in both directions. Evaluation of type I and II is shown in Table 1. 

Table 1. Errors in SF-1 binding site prediction by SITECON calculated for various conformational 
similarities 

 92.00 % 93.00 % 94.00 % 95.0 % 
Type I error 0.30 0.39 0.56 0.70 

Type II error 7.31E-04 
(1/1368) 

5.22E-04 
(1/1915) 

2.23E-04 
(1/4484) 

6.97E-05 
(1/14347) 

 
Experimental verification of the potential binding sites for SF-1. For verification 

purposes, a gel retardation assay of labeled 32-bp double-stranded oligonucleotide probes 
corresponding to the predicted binding sites was performed. The source of SF-1 was 
testicle cell nuclear extracts from Wistar rats aged 14 days. If the corresponding 
retardation bands disappeared after adding antibodies to SF-1 (Upstate), the presence of 
SF-1 in DNA-protein complexes was assumed. 

IMPLEMENTATION AND RESULTS  

Detection of new potential binding sites for SF-1 in steroidogenesis gene 
promoter regions with SITECON and experimental ascertainment. SITECON 
detected 15 new SF-1 binding sites in the promoter regions of 33 steroidogenesis genes 
(Table 2A). These promoter sequences had previously not been tested for binding with 
SF-1. Additionally, we tested three more new potential binding sites predicted in  
5′-flanking gene regions, which, according to TRRD, contained experimentally identified 
SF-1 binding sites (Table 2B). Two of these potential binding sites were predicted to be 
located in the human and rat Cyp17 genes (at positions –44 and –309, respectively). 
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SITECON suggests that the conformational similarity between the third potential binding 
site, which is at position –54 in the pig LHbeta gene, and the sequences of the known  
SF-1 binding sites is below the accepted threshold value. Because that binding site was 
located similarly to the known SF-1 binding sites in the orthologous (bovine, horse and 
rat LHbeta) genes, it was tested, too. All the predicted sites were tested by a gel 
retardation assay with antibodies. The ability to interact with SF-1 was confirmed for all 
the 18 binding sites (Table 2). 

Table 2. Potential binding sites for SF-1 predicted with SITECON in steroidogenesis gene and 
experimentally ascertained 

 Gene SF-1 binding site 
position* 

P** Confirmed 
experimentally 

 A    
1 Cyp17 (Mouse) -283 0.944 + 
2 Cyp17 (Mouse) -49 0.949 + 
3 Ad (Bovine) -428 0.962 + 
4 Cyp11B1 (Guinea pig) -126 0.945 + 
5 Cyp11B3 (Rat) -309 0.945 + 
6 Cyp11B1 (Sheep) -337 0.947 + 
7 Oxt (Mouse) -164 0.966 + 
8 Oxt (Rat) -167 0.962 + 
9 Oxt (Human) -159 0.961 + 
10 Cyp11B2 (Rat) -324 0.951 + 
11 HSD3b (Mouse) –113 0.942 + 
12 Ad4BP/SF-1 (Mouse) –224 0.952 + 
13 CYP17 (Porcine) –51 0.946 + 
14 HSD17BI (Rat) –84 0.941 + 
15 LH beta (Porcine) –114 0.959 + 
 B    
16 CYP17 (Human) -44 0.944 + 
17 CYP17 (Rat) -309 0.944 + 
18 LHbeta (Ss) -58 0.928 + 
* Position is given relative the transcription start site. **Conformational similarity to the known SF-1 
binding sites as assessed by SITECON. 

 
Analysis of transcription factor SF-1 binding site localization in the regulatory 

regions of orthologous genes. We compared the locations of the SF-1 binding sites in the 
regulatory regions of the orthologous genes using TRRD, experimental data published in 
the literature, and our results. The regulatory regions of five orthologous groups are 
presented in Fig. 1. In case of the Cyp17, LHeta, Cyp11B1and Oxt genes (Fig. 1a, b, с, d), 
the predicted binding sites are at the similar positions as in the orthologous genes.  

DISCUSSION  

It was experimentally confirmed that all the binding sites predicted with SITECON (15 
at the first stage (Table 2A) and two at the second stage (Table 2В)) are able to interact with 
SF-1. Additionally, the –60/–50 region of the pig LHbeta gene with the conformational 
similarity to the known SF-1 binding sites below the threshold (0.94), too, was found to be 
able to interact with that transcription factor. Analysis of the regulatory regions of 
steroidogenesis genes suggests that the positions of most of the predicted SF-1 binding sites 
are similar to those of the known, experimentally identified SF-1 binding sites with proven 
functionality. These and our experimental data on SF-1 binding provide strong evidence that 
the predicted sites must be functional. The new genes that we have revealed as potential 
targets to SF-1 seem to be worthy of experimental verification for functionality. 
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Figure 1. The regulatory regions in groups of orthologous genes for steroidogenesis. The curved arrow 
indicates the transcription start site. To the left above the designation of each sequence, the EMBL acc. 
number is indicated. Species designation: Hs, Homo sapiens; Mm, Mus musculus; Rn, Ratus norvegicus; 
Bt, Bos taurus; Ss, Sus scrofa; Ec, Equus caballus; Oa, Ovis aries; Cp, Cavia porcellus. 0.928 is the 
SITECON-based conformational similarity to the known SF-1 binding sites in the training sample. 
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SUMMARY 

Motivation: Analysis of electrostatic properties of promoter DNA is a promising means 
for yielding information about promoter recognizable elements and their functioning. 

Results: Electrostatic potential distribution of synthetic consensus-like promoters and 
their derivatives containing A-tracts at different positions in upstream region of promoter 
DNA was calculated and analyzed in respect with their functional behavior. Specific 
electrostatic motifs found in the upstream region of A-tracts containing promoters were 
shown to be involved as signal elements in differential recognition of the promoters by 
RNA polymerase α-subunit acting at early steps of complex formation. 

Availability: electrostatic potential distribution analysis software is available at request 
to academic users (lptolik@icb.psn.ru). 

INTRODUCTION 

Here, electrostatic properties of three synthetic promoters Ps1, Ps2, Ps3 and their 
derivatives Ps1/A3-40, Ps1/A3-44 and Ps1/A3-48, containing 3 A-tracts at different positions 
in upstream region of Ps1 were studied. All these promoters have been earlier 
characterized in details in comparative experiments by their interaction with RNA 
polymerase at different steps of complex formation and transcription initiation (Ellinger et 
al., 1994a, b). The choice of these promoters for our study was motivated by their unusual 
functional characteristics differing from “consensus sequence rule” behavior thus 
stimulating a search of new promoter determinants. The results obtained in our work 
indicate that electrostatic characteristics of promoter DNA can be responsible for the 
interaction with RNA polymerase acting at early steps of complex formation. 

METHODS 

Three synthetic promoters Ps1, Ps2, Ps3 and their biochemical characterization were 
taken from (Ellinger et al., 1994a). Three derivatives of Ps1 promoter Ps1/A3-40, Ps1/A3-44 
and Ps1/A3-48, containing three phased A-tract sequences located at different positions in 
upstream region were taken from (Ellinger et al., 1994b). Their functional 
characterization are presented in accordance with the data (Ellinger et al., 1994b). 

The electrostatic potential distribution around double-helical DNA of the promoters 
was calculated by the Coulomb method (Kamzolova et al., 2000) using the computer 
program of Sorokin A. (lptolik@icb.psn.ru). 
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RESULTS AND DISCUSSION 

The promoters Ps2 and Ps3 have consensus sequences in -10 and -35 regions, also Ps3 
has consensus 17 bp spacer between them. In Ps2 it is 16 bp length due to 1 bp deletion of 
Ps3 in -14 position. Thus, sequences of Ps2 and Ps3 are identical except this deletion. The 
Ps1 has -35 consensus and 17 bp spacer but its -10 hexamer differ from consensus at -12. 
The homology scores for Ps1, Ps2 and Ps3 are 59 %, 61 % and 71 %, respectively. All the 
three specify the correct initiation of the expected transcript in vivo. But their strengths 
(3.4; 8.4 and 2.1 for Ps1, Ps2 and Ps3 (Ellinger et al., 1994a)) do not correlate with the 
match of the promoter sequences to the consensus pattern. Ps3 with the highest homology 
score is the weakest with only one-quarter of the activity of Ps2. Ps1 and Ps2 with similar 
homology scores differ by a factor of 2.5 in activity. Also activities of Ps1, Ps2 and Ps3 are 
determined by different rate limiting steps within the pathway of RNA polymerase-
promoter interaction: Ps1 is rate-limited during early phase of the process when the 
enzyme binds to the promoter, Ps2 and Ps3 are limited in a late step involving promoter 
clearance in transcribing complexes. 

Electrostatic profiles of Ps2 and Ps3, that are limited in late steps of productive complex 
formation are very similar whereas Ps1 which is rate-limited during initial binding of RNA 
polymerase to the promoter is characterized by quite different electrostatic pattern  
(Fig. 1b). Because electrostatic interactions contribute to promoter activity at the very 
early steps of RNA polymerase-promoter recognition (Kamzolova et al., 2000), it is 
reasonable to suggest that variations in functioning of Ps1 as compared with Ps2 and Ps3 
can be at lest partly due to the difference in their electrostatic properties. Then, in the case 
of Ps1, electrostatic component may play a role in specifying the pathway of the 
interaction of the promoter with RNA polymerase as well as in determining its strength. 
In the case of Ps2 and Ps3, which are characterized by the same type of RNA polymerase-
promoter interaction and very similar electrostatic patterns, some other factors can be 
responsible for the unpredictable difference in their activities, like different spatial 
arrangement of recognizable modules in the two promoters (16 bp spacing for Ps2 and 17 
bp spacing for Ps3) leading to overstabilization of open complexes with a lower 
productivity at one of them (Ps3) (Ellinger et al., 1994a). 

It was shown that A-tracts inserted into upstream region of Ps1 promoter can influence 
its function by increasing promoter activity due to facilitated RNA polymerase binding in 
the presence of A-tracts via some additional contacts between UP-region and α-subunit 
(Ellinger et al., 1994b), but mechanisms of such interaction remain unknown. 

Since electrostatic properties of promoter DNA were shown to be important for the 
interaction with α-subunit (Kamzolova et al., 2000; Kamzolova et al., 2005) we decided 
to study how the insertion of A-tracts in upstream region of Ps1 could influence its 
electrostatic pattern and to analyze it in respect to the functional consequences. 

Three derivatives of Ps1 containing 3 phased five-member A-tracts located at different 
positions in upstream region of the promoter were used (Fig. 2a). The first A-tract is 
centered around positions -40, -44 and -48 in promoter Ps1/A3-40, Ps1/A3-44 and Ps1/A3-48, 
respectively. Ps1 activity was shown to be stimulated by A-tracts in all three constructs. 
The strengths correspond to 3.4, 17.1, 10.6 and 10.8 for Ps1, Ps1/A3-40, Ps1/A3-44 and 
Ps1/A3-48, respectively (Ellinger et al., 1994b). Maximal activation (fivefold) was 
observed for Ps1 containing A-tracts at position -40. It should be noted that the stimulating 
effect was the same for Ps1/A3-44 and Ps1/A3-48 which are characterized by almost half 
turn dislocation of A-tracts with respect to Ps1 core promoter sequence thus indicating no 
determinant role of A-tract induced DNA bending in activation of these promoters. 
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Figure 1. Electrostatic potential distribution around double-helix DNA containing Ps1, Ps2 and Ps3 
promoters: a – nucleotide sequences of the promoters; b – electrostatic patterns. 

The insertion of A-tracts in any position in upstream region of Ps1 strongly influences 
electrostatic properties of the promoter introducing many changes in its electrostatic pattern 
(compare Fig. 1b, curve Ps1 and Fig. 2b). It is noteworthy that electrostatic changes cover 
many sequences including those that are very far apart: the A-tracts are inserted upstream 
from position -40 and changes in the electrostatic profiles are observed in core sequences 
and downstream from the transcriptional start. The results indicate that there is no direct 
correlation between nucleotide sequence and its electrostatic pattern thus confirming 
independent character of promoter determinants based on electrostatic characteristics of 
promoter DNA and its structure. Electrostatic properties of DNA in far upstream region 
corresponding to -75 - - 100 bp positions (indicating by vertical lines in Fig. 2b) are of most 
interest for our task since this region is known to be involved in electrostatic interaction 
with RNA polymerase α-subunit (Kamzolova et al., 2000; 2005). Fig. 2b shows that Ps1/A3-
44 and Ps1/A3-48 constructs which are characterized by the same activation in response to 
the insertion of A-tracts, exhibit electrostatic patterns similar in design in the far upstream 
region. The important feature of this pattern is a continuous rise of electrostatic potential at 
–80 bp - -90 bp with extended positive peak in this region.  
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Figure 2. Electrostatic potential distribution around A-tracts containing promoters Ps1/A3-40,  
Ps1/A3-44 and Ps1/A3-48: a – nucleotide sequences of the promoters; b – electrostatic patterns. 

A distinctly different electrostatic element is found in the far upstream region of 
Ps1/A3-40 which is characterized by a much more stimulating effect in response to the 
insertion of A-tracts. Its specific feature is a more negatively charged character of  
–80 - -90 bp region as compared with the adjacent site located further upstream. 

As shown in the cases of T4 phage promoters, the presence of different electrostatic 
elements in this region is essential for different type of their interaction with α-subunit thus 
providing a differential response in promoter functioning (Kamzolova et al., 2000; 2005). 

Thus, electrostatic patterns of the three A-tracts containing promoters can be specified 
according to the presence of some functionally important distinctive motifs which may be 
involved in differential recognition of the promoters by RNA polymerase α-subunit thus 
accounting for the difference in their functional behavior. 
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SUMMARY 

Motivation: Superoxide dismutase (SOD) gene family in eukaryotes and prokaryotes 
consists of multiple genes encoding enzymes scavenging of highly toxic superoxide anion 
radicals. SODs are the main part of the systemic antioxidant defense against oxidative and 
genetic stresses. The SOD gene family plays an important role in ontogenesis of animal 
and plant species. A complex structural organization of antioxidant genes families  
(in particular, SOD gene family) is a result of numerous gene duplication events. This 
complex organization might reflect a high level of cell compartmentalization in plant 
species. The analysis of evolution of SOD genes is important for a deeper understanding 
of co-evolution of mitochondrial, chloroplast and nuclear genomes in plant species.   

Results: In this work, the new SOD gene transcripts were identified in Zea mays using 
EST analysis. Analysis of ESTs corresponding to MnSOD gene transcripts confirmed our 
experimental evidence on importance of alternative polyadenylation of MnSOD gene 
transcripts in plant cells. The EST analysis-based identification of alternative spliced 
FeSOD and Cu/ZnSOD transcripts suggests that the signal peptide might be due  
to exon-shuffling. 

INTRODUCTION 

Superoxide dismutase (SOD) gene family in eukaryotes and prokaryotes consists of 
multiple genes encoding enzymes scavenging of highly toxic superoxide anion radicals. 
SODs are the main part of the systemic antioxidant defense against oxidative and genetic 
stresses. The SOD gene family plays an important role in ontogenesis of animal and plant 
species. A complex structural organization of antioxidant genes families (in particular, 
SOD gene family) is a result of numerous gene duplication events. This complex 
organization might reflect a high level of cell compartmentalization in plant species. 
Plants cells contain almost all known SOD types which differ by their metal cofactor and 
subcellular localization. Based on the metal cofactor used by the enzyme, SODs are 
classified into three groups: iron SOD (FeSOD), manganese SOD (MnSOD), and copper-
zinc SOD (Cu/ZnSOD). FeSODs are located in the chloroplast, MnSODs in the 
mitochondrion and the peroxisome, and Cu/Zn SODs in the chloroplast, the cytosol, and 
the extracellular space.  
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The absence of FeSOD in animals suggested that the FeSOD gene have 
plastid/cyanobacterial origins and moved to the nuclear genome during eukaryotic 
evolution. Support of this theory comes from the existence of several conserved regions that 
are present in plant and cyanobacterial FeSOD sequences, but absent in non-photosynthetic 
bacteria. MnSOD genes, in turn, may have a mitochondrial origin. Comparison of deduced 
amino acid sequences from these three different types of SODs suggested that Mn- and 
FeSODs are more ancient types of SODs, and these enzymes most probably have arisen 
from the same ancestral enzyme, whereas Cu/Zn SODs have no detectable sequence 
similarity to Mn- and FeSODs and might be a later eukaryotic acquisition. 

The most intriguing subfamily of plant SODs are FeSODs. To date, no convincing 
direct experimental evidence has been provided for existence of FeSOD genes in 
extensively studied plant species such as Zea mays and Triticum aestivum. In comparison 
to MnSODs, which function only in mitochondria, FeSODs and Cu/ZnSODs function in 
chloroplasts. It was suggested that the most ancient FeSOD enzymes had been replaced 
by Cu/ZnSODs in some plant species (Van Camp et al., 1997). Previously we have 
reported the identification of FeSOD gene transcript (Katyshev et al., 2005), as an 
additional chloroplast Cu/ZnSOD gene (Katyshev et al., 2006a) in Z. mays. Z. mays and 
T. aestivum EST analysis confirmed our experimental data and allowed us to test the 
aforementioned hypothesis.  

We have analyzed alternatively polyadenylated and spliced forms of SOD genes 
which have different subcellular locations using EST analysis. Analysis of the different 
plant species ESTs corresponding to MnSOD gene transcripts confirmed our experimental 
evidence on importance of alternative polyadenylation of MnSOD gene transcripts in 
plant cells (Katyshev et al., 2006b). The EST analysis-based identification of alternative 
spliced FeSOD and Cu/ZnSOD transcripts suggests that the signal peptide might be 
acquired through exon-shuffling (Long et al., 1996; Vibranovski et al., 2006). 

METHODS AND ALGORITHMS 

The search of plant ESTs corresponding to SOD cDNAs was performed using the 
BLAST program (McGinnis, Madden, 2004) at the Plant Genome Database server 
(http://www.plantgdb.org/PlantGDB-cgi/blast/PlantGDBblast). We used blastn and 
tblastx programs with the expectation value (E-value) lower than 10–4. Alignments of 
nucleotide sequences were constructed using a ClustalW algorithm-based program from 
the Vector NTI5 package (Bethesda Inc., USA). To predict subcellular localization of 
proteins, we used Internet resources available at the http://www.expasy.org/ molecular 
biology tools server: a) the Predotar program (Small et al., 2004) at the 
http://www.inra.fr/predotar/; b) the TargetP V1.0 program (Emanuelsson et al., 2000) at 
the http://www.cbs.dtu.dk/services/TargetP. 

RESULTS AND DISCUSSION 

The growing number of plant genome and transcriptome projects facilitates analysis of 
evolution of plant gene families. Sequencing of large genomes (e.g. Zea mays) is far from 
being complete, thus the trancriptome data analysis, such as EST analysis, is more 
promising. Another advantage of EST analysis is the ability to identify alternatively 
spliced and polyadenylated transcript variants of genes. 

We have performed search of SOD cDNAs in Z. mays EST databases in order to 
delineate SOD gene composition and to provide additional support to our experimental 
evidence of the existence of previously undescribed FeSOD and Cu/ZnSOD genes in this 
plant species. Analysis of Z. mays ESTs corresponding to SOD gene transcripts revealed 
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that the real SOD gene family of this plant species is different from the earlier reported 
SOD repertoire (Fink, Scandalios, 2002).  

Z. mays MnSOD ESTs can be divided in two large groups, corresponding to MnSOD3-1 
transcript (GenBank acc. number X12540) and MnSOD3-4 cDNA (GenBank acc. number 
L19463). First group of sequences is further subdivided into two subgroups comprising of 
EST sets differing by single nucleotide substitutions. We did not find ESTs which exactly 
correspond to MnSOD3-2 (GenBank acc. number L19461) and MnSOD3-3 (GenBank acc. 
number L19462) transcripts. These results suggest that MnSOD gene family of Z. mays 
contains 2–3 gene copies similar to other monocot plant species, e.g. Triticum aestivum and 
Oryza sativa, and the previously reported data on the existence of four MnSOD genes in  
Z. mays genome (Fink, Scandalios, 2002) should be further revised. The data on exact 
MnSOD genes number in Z. mays could be obtained from corresponding genome regions 
sequencing and their mapping on chromosomes.   

Both MnSOD EST groups have a substantial variability of the length of  
3′-untranslated regions which could be explained by alternative polyadenylation of 
corresponding pre-mRNAs. Previously we reported data on alternative polyadenylation of 
MnSOD gene transcripts in the plant Larix gmelinii (Katyshev et al., 2006b), therefore 
such result is not surprising but allows us to propose possible involvement of alternative 
polyadenylation of MnSOD transcripts in regulation of corresponding genes expression. 
The identification of similar alternatively polyadenylated MnSOD transcript variants by 
analysis of ESTs in other plant species, Arabidopsis thaliana and T. aestivum, gave an 
additional support to this hypothesis. 

The search for ESTs corresponding to previously reported FeSOD cDNA (Katyshev et 
al., 2005) resulted in identification of about 50 ESTs which can be divided based on 
sequence similarity into three major groups. The levels of sequence divergence allow us 
to suggest that ESTs from these three groups correspond to mRNAs of three different 
genes. BLAST searches for ESTs corresponding to previously described Cu/ZSOD gene 
transcripts (Fink, Scandalios, 2002; Katyshev et al., 2006a) resulted in identification of 
more than 500 ESTs, which can be divided based on sequence similarity into five major 
groups corresponding to different Cu/ZnSOD genes. These results support our 
experimental data and suggest that Z. mays SOD gene family is more complex than it was 
earlier suggested and contains at least four additional previously undescribed genes (Fink, 
Scandalios, 2002): 3 FeSOD and 1 Cu/ZnSOD genes. The accurate revision of number of 
MnSOD genes in Z. mays is also needed. 

The analysis of Z. mays ESTs corresponding to FeSOD and Cu/ZnSOD transcripts 
also revealed that the large number of these transcripts has a substantial variability of 
exonic sequences. These results suggest that such variation of transcripts may be a 
consequence of alternative splicing and/or differences in intron splicing efficiency. The 
observed prevalence of such transcript structure alterations in 5′-terminal regions 
encoding N-terminal signal peptides of corresponding proteins suggests that the evolution 
of 5′-terminal intronic and exonic sequences of plant SOD genes may be a key 
mechanism of generation of duplicated SOD genes encoding enzymes of different 
subcellular localization. 

This hypothesis is further supported by mRNA variants in other plant species:  
A. thaliana Fsd1 gene is presented by four transcript variants, Fsd1-1 – Fsd1-4, 
(GenBank acc. numbers NM_118642, NM_179109, NM_179110, NM_001036633). 
One of these mRNA variants (Fsd1-4) contains in its 5′-terminal region additional exon 
sequence which interrupts reading frame of the FeSOD protein, and in this case the 
translation from a downstream AUG codon results in the formation of active enzyme 
which does not contain chloroplast transit peptide. Another argument supporting the 
validity of this hypothesis could be obtained from analysis of the intron/exon 
organization of FeSOD and Cu/ZnSOD genes of A. thaliana, where the variation in 
5’terminal intron number and size corresponds to differences in subcellular localization 
of the encoded proteins (Fig. 1). Based on in silico prediction of cellular localization of 
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proteins encoded by identified in EST analysis Z. mays FeSOD and Cu/ZnSOD genes 
the similar situation is characteristic and in case of Z. mays. Presence of exons encoding 
signal peptides suggests that these exons might a result of exon-shuffling, an important 
mechanism accounting for the origin of many new proteins in eukaryotes (Long et al., 
1996; Vibranovski et al., 2006). 

 

Figure 1. Intron/extron structure of FeSOD and Cu/ZnSOD of Arabidopsis traliana. 
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SUMMARY 

Motivation: The complicated regulation of the late catabolite genes is actual problem 
of the modern molecular microbiology. As a model for this research serve extracellular 
enzymes of Bacilli.  

Results: The nucleotide sequence of aprBi gene coding subtilisin-like proteinase from 
Bacillus intermedius was determined. The sequences recognized by sigma-A-RNAP and 
translation start site were predicted using BPROM and SignalP programs, respectively. 
The aprBi promoter analysis revealed the presence of putative sites for interaction with 
numerous regulatory proteins (Spo0A, DegU, AbrB, CcpA) and sigma factors. Sequences 
recognized by different operators and transcription sigma factors overlap each other 
indicating that their contributions in aprBi gene expression control differ in time. The 
participation of each transcription regulators in aprBi regulation was confirmed using 
Bacillus subtilis mutant strains.  

Availability: Revealing of putative regulation sites in promoter region may serve as a 
basis for identification of regulation mechanisms that control the gene expression.  

INTRODUCTION 

The bacterial metabolism efficiency is provided by balance between catabolism and 
anabolism. Their activation and repression depends on environmental factors. Bacteria 
have developed mechanisms allowing coordinating metabolism in accordance with 
nutrients availability. The complicated regulation of the catabolite genes is reflected in 
their promoter architecture. Analysis of regulatory sites in promoter region allows 
predicting regulatory mechanisms, which control gene expression (Mironov et al., 1999). 
As a model for these researches serve microbial extracellular enzymes.  

The gram-positive spore-forming bacteria Bacillus intermedius secrete during 
stationary stage of growth numerous proteinases, in which the major is subtilisin-like 
proteinase (Sharipova et al., 2002). The enzyme appears in culture liquid at the stage of 
slowing down of the growth, with maximal levels of the enzyme activity recorded at the 
24th  and 48th h of growth. Each protein fractions were isolated and characterized. The 
main properties of these two protein fractions were found to be similar and their N-
terminal amino acid sequences appeared to be identical (Balaban et al., 1994, 2004). 
Proteinase 2 showed higher specific activity against peptide substrate. It was determined, 
that both enzymes are the products of one gene. However, the mechanisms involved in the 
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regulation of subtilisin-like proteinases synthesis during the different stages of bacterial 
life cycle of B.intermedius are still unclear.  

METHODS AND ALGORITHMS 

The plasmid pCS9 containing cloned aprBi gene was given by prof. Kostrov (IMG 
RAN, Moscow). The DNA fragments cloned in pCS9 were sequenced by the dideoxy 
chain-termination method using the T7 (Pharmacia) sequencing kit and a series of 
synthetic oligonucleotides that primed at intervals of approximately 300 nucleotides. 
Analysis of the cloned nucleotide sequence performed out using ORF Finder (Open 
Reading Frame Finder) network server (http://www.ncbi.nlm.nih.gov/gorf). The starting 
codon was detected using SignalP algorithm (http://www.cbs.dtu.dk/services/SignalP/), 
which allows predicting the functional activity of potential signal peptides (Bendtsen et 
al., 2004). The alignment and sequence comparisons with the GenBank database were 
performed with the enhanced version of the BLAST program 
(http://www.ncbi.nlm.nih.gov/blast) (Altschul et al., 1997). The DNA sequence preceding 
the gene for B. intermedius proteinase was inspected for the occurrence of the 
characteristic –35 and –10 boxes of SigA-type promoters (Helmann, 1995) by Softberry 
BPROM (Prediction of Bacterial Promoters) network server (http://www.softberry.com). 

RESULTS AND DISCUSSION 

The nucleotide sequence of B. intermedius subtilisin-like serine proteinase gene has 
been determined as described above and submitted to the GenBank database under 
accession number AY754946. The sequence analysis using the ORF Finder program 
revealed the presence of open reading frame coding for serine proteinase. Three putative 
start codons (TTG, GTG and ATG) were identified (Fig. 1). Using SignalP algorithm we 
have established the probability of signal peptides functional activity, starting from each 
of three supposed translation start sites. 

 

Figure 1. Putative translation start sites in aprBi gene. The probabilities of functional activity of 
corresponding signal peptides are indicated at the bottom. 

Concerning analysis results, most probable are TTG (D-value = 0,79) or GTG (D-
value = 0,69) (Fig. 1), not ATG (D-value = 0,23). It should be noted, that in Bacilli genes 
10 % of ORFs are translated from GTG and 12 % start from TTG. The mutagenesis of 
putative start-codons has showed the translation starts from GTG.  

The alignment of the aprBi promoter sequence with that of the gene for B. pumilus 
subtilisin-like proteinase showed 91 % identity. On the contrary, the comparative analysis 
of the aprBi and the gene for B. subtilis subtilisin (aprE) revealed only 61 % identity on 
extension of 81 bp in the promoter region. We propose that various regulatory pathways 
are involved in expression of these genes.  

The aprBi promoter region was analyzed with respect to the putative target sequences 
for binding to a number of regulatory proteins. Using Softberry BPROM network server, a 
potential promoter sequence with poor similarity to σA-type –35 (score 22) and –10 (score 
52) promoter recognition sequences was found in contrast with B. subtilis aprE gene (scores 
48 and 54, respectively) (Fig. 2). It leads us to conclusion that other regulatory factors for 
effective aprBi transcription are required. The aprBi promoter region was examined for 
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putative regulatory sites. The sequences sharing 78 %, 75 % and 82 % identity with 
canonical sequences for interaction with σL, σH and σE were found (Fig. 2). The putative 
operator sequence for binding with carbon catabolite repressor CcpA with 78,6 % identity 
with canonical sequence (TGWNANCGNTNWCA) was found (Fig. 3). 

 

Figure 2. The regulatory region of aprBi gene. The putative sequences recognized by transcription sigma 
factors are boxed. 

 

 

Figure 3. The regulatory region of aprBi gene. A region showing homology to the consensus sequences 
for site binding the catabolite repressor, TGWAARCGYTWNCW and the AbrB regulatory protein, 
WAWWTTTWCAAAAAAW are boxed, identical nucleotides are underlined. 

The aprBi gene expression was found to be repressing by exogenous glucose 
conforming its regulation by catabolite repression mechanism. Screening with 
WAWWTTTWCAAAAAAW, a 16-bp consensus sequence based on 20 observed AbrB 
binding regions, identified a region with 63 % identity (Fig. 3). The data of aprBi 
expression in AbrB-Spo0A double mutants have demonstrated the AbrB protein 
participation in subtilisin-like proteinase gene control. Further, in the aprBi gene 
regulatory region nucleotide sequences sharing 72–86 % identity with consensus 
sequence (AGAA11-13TTCAG) typical for DegU-regulation were detected (Dartois et al., 
1998) (Fig. 4). These sequences appeared to be organized as direct tandem repeats. The 
regulatory region of aprBi gene contains also the sequences with structural homology  
(70–86 %) to specific target site for binding with Spo0A regulatory protein (TGNCGAA) 
(Fig. 4). Using DegS-DegU and Spo0A mutant strains was established the positive 
regulation of aprBi by these regulatory systems. Interesting, in contrast with B.subtilis 
subtilisin gene, DegS-DegU system plays minor regulatory role in B. intermedius subtilisin-
like proteinase gene expression. 

The data presented here describe the complex network regulation of B. intermedius 
serine proteinase expression, including the action of spo0, degU genes, catabolite 
repression and AbrB protein. This data confirm the changes of control of enzyme 
biosynthesis at the different stages of bacterial growth. 
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Figure 4. The aprBi gene promoter. Potential Spo0A binding sites are boxed. Putative DegU sites are 
underlined; consensus sequences for recognition by DegU are bold. 
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SUMMARY 

Motivation: microRNAs (miRNAs) are small RNA that interact with target mRNAs 
causing cognate mRNA degradation or translation repression, play an important regulatory 
role in animals and plants. Discovery of specific miRNA features in the light of experimental 
data on miRNA abundance allows to predict its tissue-specific expression pattern. 

Results: We revealed that mutual occurrence of dinucleotides UG in positions from 17 
to 19 and CA in positions from 19 to 21 (relative to 5′ end of Arabidopsis thaliana 
miRNA) corresponds to the high accumulation level of miRNAs in stems whereas the 
absence of both dinucleotides at the same locations corresponds to the low accumulation 
level. The presence of dinucleotide UG in positions from 6 to 12 together with absence of 
dinucleotide CC in positions from 15 to 21 corresponds to the high accumulation level of 
miRNAs in siliques whereas the opposite event to the low level of accumulation. 

INTRODUCTION 

MiRNAs are short non-coding endogenous RNA 20–24 nt long that by nearly perfect for 
plants (and partial for animals) complementary base pair interaction with target mRNAs lead 
to inhibition of translation (Olsen, Ambros, 1999; Chen, 2004) or to mRNAs cleavage (Llave 
et al., 2002; Yekta et al., 2004). MiRNA-mediated control of plant development became 
apparent in the comparison of miRNAs silencing deficient mutants with wild type. (Palatnik et 
al., 2003; Baulcombe, 2004; Chen, 2004). Presently in genome of Arabidopsis thaliana it has 
been found more than hundred miRNA genes (Griffiths-Jones, 2004).  

Target mRNA cleavage is directed by multi-protein RISC complex (RNA-induced 
silencing complex, Bartel, 2004; Tang, 2005). The RISC complex consists of a 
dsRNAspecific RNase (DICER) along with other factors that cut the mRNA-miRNA 
duplex. Nucleotide context-dependent thermodynamic properties of miRNA can play a 
critical role in determining the molecule's function and longevity (Khvorova et al., 2003). 
In particular, the statistical analysis of the internal stability of miRNAs precursor hairpins 
revealed enhanced flexibility of miRNAs precursors, especially at the 5'-anti-sense 
terminal region. Apparently, miRNAs have the block structure and there exists the special 
pattern of separately located context signals. 

The miRNAs context pattern discovery is still an open problem. Known miRNAs 
naturally partition to the number of families of homologous sequences. Consensus based 
algorithms provide sequence alignment of related families only, yet common pattern 
discovery for sequences belonging to different families could be achieved calling for help 
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the secondary structure information (Griffiths-Jones et al., 2003). General context 
characteristics describing sequences of mature miRNA are not discovered yet. Existing 
miRNA recognition algorithms evolve all available a priori information about the 
biological model, i.e. miRNA precursor structure, complementarity to a target mRNA, 
conservation phenomenon of miRNA (Bengert, Dandekar, 2005). 

For miRNA analysis we used SiteGA method, successfully applied earlier for 
transcription factor binding sites recognition (Levitsky et al., in press). The highlighting 
advantage of SiteGA method is combination of genetic algorithm power and discriminant 
function insight that allows to find out subtle dependencies between local dinucleotide 
frequencies. In our work we revealed the dependencies between context characteristics of 
mature miRNA sequences found in Arabidopsis thaliana and microarray data on miRNA 
levels in the various plant organs. 

METHODS AND ALGORITHMS 

Mature sequences of Arabidopsis thaliana miRNAs were extracted from microRNA 
Registry database (http://www.sanger.ac.uk/cgi-bin/Rfam/mirna/browse.pl). We used 21-nt 
long miRNAs as they predominantly form the miRNA pool. According to the miRNAs 
Registry classification these miRNAs are subdivided into 37 homologous families. Since we 
have merged together closely-related families of miRNAs such as: 156 and 157, 165 and 
166, 170 and 171, we analyzed 34 families of sequences, totally contained 57 miRNAs.  

Experimental data on miRNAs accumulation levels in various organs of Arabidopsis 
thaliana are known only for 17 miRNAs out of 57 described above (Axtell and Bartel, 
2005). In total we analyzed 18 experiments for 7 plant organs: inflorescences  
(4 experiments), stems (2), siliques (2), cauline leaves (2), rosette leaves (2), seedlings – 
short days (2), seedlings – long days (2), roots (2). 

To avoid the heterogeneity of source data which descended from the homology of 
sequences within one family and various total count of family members, we applied the 
iterative procedure to train the SiteGA method. Each iteratively generated train sample of 
sequences contained just one randomly chosen sequence from each of 34 miRNA 
families. In such a manner we prepared 100 TRAIN SAMPLES. The search of locally 
positioned dinucleotides (LPDs) was carried out by SiteGA method based on discriminant 
analysis and genetic algorithm (Levitsky et al., in press). Each LPD is characterized by 
the location [a,b] within miRNA [1,21] and the dinucleotide type (AA, AT…). According 
to SiteGA method, the positive and negative significant (Student’s criterion, p < 0.05) 
correlations between LPDs frequencies for miRNAs sequences were found (100 iterations). 
The positive correlation of an LPDs pair denotes the most probable presence or absence of 
both LPDs in real sample in comparison with random (shuffled) ones. The negative 
correlation implies the higher probability to mutual exclusion state of LPDs pair, i.e. if the first 
LPD is present, then the other one is absent and vice versa. So we may conclude that both 
correlation types detaches two non-overlapping subsets with the contrast context 
characteristics. To find out the dependences between the accumulation levels of miRNAs in 
various plant organs and observation of LPDs absence/presence in LPDs pair the exact Fisher 
criterion for contingency tables was used (Table 1). Locations of dinucleotides were defined 
with respect to dinucleotide positions, i.e. the LPD [6;12] UG denotes that the nucleotide U 
should be found from the 6th to the 12th position.  

Table 1. The contingency table for context feature ‘negative correlation between LPD [6;12] UG and 
[15;20] CC’ and miRNA accumulation level 

miRNA level, siliques (2) Feature pattern 
High Low 

Presence of LPD [6;12] UG & absence of LPD [15;20] СС 3 4 
Presence of LPD [15;20] СС & absence of LPD [6;12] UG 0 6 
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RESULTS AND DISCUSSION  

The two most reliable significant dependences between LPDs correlations and 
miRNA levels of accumulation are shown in Table 2. The LPDs correlations 
corresponding to these dependences were the most frequently observed during the TRAIN 
SAMPLES iterations. 

Table 2. Two most reliable dependences between LPDs and miRNA accumulation levels 
Significance, ×10-2  

Organ 
Dinucleotides locations 

and types, sign of 
correlation coefficient 

Frequency, 
% 

of dependence, 
Fisher’s 
criterion 

of correlation 
coefficient, 
Student’s 
criterion 

I Stems [17;18] UG [19;20] CC + 96 2.7 2.2 
II Siliques [6;12] UG [15;20] CC – 38 4.9 4.1 

 
We found significant dependences (Table 2) for only two out of seven considered 

tissue types (siliques, stems). The first dependence means that the mutual occurrence of 
dinucleotides [17;18] UG and [19;20] CA corresponds to the high accumulation level of 
miRNA in stems whereas the absence of both dinucleotides at the same localizations 
corresponds to the low accumulation level. The second dependence refers the presence of 
dinucleotide [6;12] UG together with the absence of dinucleotide [15;20] CC to the high 
accumulation level of miRNA in siliques whereas the opposite event stands for the low 
accumulation level. 

Finally we investigated the common pattern of miRNAs features, significant LPDs 
correlations revealed by SiteGA method for 57 21-nt long sequences. SiteGA method 
allowed us to find out the most frequent significant correlations between LPDs observed 
for iteratively generated TRAIN SAMPLES of miRNA sequences. Five most frequently 
observed significant correlations (p < 0.05) between LPDs frequencies for the TRAIN 
SAMPLES are given in Table 3. 

 

Table 3. The common miRNA features pattern: the most frequently observed significant correlations 
between LPDs 
Significant correlations: 
dinucleotides locations  
and types1 

Sign of correlation 
coefficient 

Significance of 
correlation coefficient, 

×10-2 
Frequency, % 

[4;8] CC & [15;20] CC + 1.7 51 
[1;1] UU & [19;20] CA – 2.0 50 
[17;18] UG & [17;19] UC –  0.13 37 
[19;20] CA & [19;19] CU – 3.9 36 
[6;12] UG & [13;14] CA – 1.2 34 
1 – bold font designates LPDs involved in the significant dependences (see Table 2 above). 

 
Note that among them we found four LPDs (Table 3, bold) that were revealed above 

as significantly related with miRNAs accumulation levels for siliques and stems  
(Table 2). The LPD [19;20] CA was found in two significant correlations, each of [15;20] 
CC, [6;12] UG, [17;18] UG LPD was presented in one correlation. Thus we confirmed 
that these LPDs are important not only for miPNAs accumulation in several tissues but 
they are essential miRNAs context features. 

The revealed dependences allowed us to suppose that certain miRNA local context 
features are important for mRNA-miRNA duplex formation and stability. 
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SUMMARY 

Motivation: MicroRNAs (miRNAs) are small noncoding RNAs that regulate 
expression of many genes through interaction with their mRNAs in plant, animal and 
viruses. One of the new powerful experimental approaches Massive Parallel Signature 
Sequencing method (MPSS) provides a set of small RNA sequences including novel 
miRNAs. The identification of novel miRNAs in this small RNA set needs developing of 
the special computer annotation software. 

Results: We adapted the ARGO and SiteGA methods for MPSS data analysis. We 
found that integration of two methods appears to be the most reliable. Among the total 
MPSS pool we filtered about 2 % portion as the most probable miRNAs. Our prediction 
contained 93 new putative miRNA sequences forming 49 novel families, potential targets 
were found for these sequences in Arabidopsis transcriptome. 

INTRODUCTION 

Plant miRNAs are known to play an important role in gene regulation in wide range of 
biological processes such as plant development, organs morphogenesis, hormone 
response, sulfate assimilation, etc. (Bartel, 2004). Contemporary 118 miRNAs genes have 
been annotated in Arabidopsis thaliana genome (http://www.sanger.ac.uk/cgi-
bin/Rfam/mirna/browse.pl) and about 100 have been predicted. Recent estimate of 
miRNAs genes in the genome showed that their number could be far more than 1 % of 
genes and at least 20 % of genes are probably regulated by miRNAs (Xie et al., 2005). It 
includes the low expressed and tissue specific miRNAs, which are hardly to detect by 
common experimental methods. The computational-experimental approaches predicting 
Arabidopsis thaliana miRNAs and their targets are based on the following criteria (Adai 
et al., 2004; Jones-Rhoades, Bartel, 2004; Lindow, Krogh, 2005; Wang et al., 2004): 

• miRNAs genes belong to noncoding regions of genome; 
• miRNAs precursors can form the stable hairpin secondary structure, containing 

miRNA sequence in the stem region and possessing a loop from 15 to 100 bases in length; 
• miRNAs exhibit near perfect base pairing with their targets; 
• mature miRNAs sequences are conserved in the Oryza sativa genome. 
The MPSS method, which sequences hundreds of thousands of molecules per reaction, 

reveals the pool of small RNA in Arabidopsis seedling and inflorescence issuing the 
challenge to recognize new miRNAs among them (Lu et al., 2005). Here, in this paper, 
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we used the integrated approach involving two learning paradigms to find the putative 
miRNAs in the MPSS small RNA set. 

METHODS AND ALGORITHMS 

Mature sequences of Arabidopsis thaliana miRNAs were extracted from microRNA 
Registry database (http://www.sanger.ac.uk/cgi-bin/Rfam/mirna/browse.pl). We used 21-nt 
long miRNA as they predominantly form the miRNA pool. According to the miRNA 
registry classification these miRNAs are subdivided into 37 families of homologous 
sequences. Since we have merged together closely-related families such as: 156 and 157, 
165 and 166, 170 and 171, we have analyzed 34 families of sequences. The data under 
consideration contained exactly the one member from each of 34 families. This procedure 
allowed us to compile the representative miRNA sample and to avoid the incorrect accuracy 
estimation. Totally we have chosen for the training set 34 from 42 known miRNA families. 

To solve the miRNAs recognition task we applied the integrated approach involving 
two learning paradigms, ARGO (Vishnevsky, Kolchanov, 2005) and SiteGA (Levitsky et 
al., 2006). Briefly, ARGO is an approach for finding degenerated oligonucleotide motifs 
in nucleotide sequences. The SiteGA approach is based on the detection of locally 
positioned dinucleotides by genetic algorithm and discriminant analysis. 

We used the same bootstrap iterations and thresholds setting procedures for both 
ARGO and SiteGA methods.  

Recognition accuracy estimation was based on the standard bootstrap procedure. The 
full set of M = 34 miRNAs was randomly sampled 7 times into the new training subsets, 
each contained 0.8 × M sequences. The ARGO and SiteGA methods trained on the basis 
of these subsets were applied to the rest sequences (control subsets). The random 
nucleotide sequences obtained by shuffling of control sequences were included in 
negative sequence samples. We counted the false positives (FP) and the true positives 
(TP) rates relying on the negative and control sequence samples correspondingly. At each 
TP rate we considered as the integrated recognition the success of both functions. 

The dependences of FP rate vs. TP rate for each method separately and for integrated 
method at differing stringencies are given in Fig. 1. 

 

Figure 1. Recognition performance of ARGO, SiteGA methods and both taken together. 

We came to the following conclusions: 
• generally the recognition performance is not very high. For example, the 50% TP 

rate corresponds to 0.2 FP rate. 
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• at the most stringent threshold (TP = 14 %) both methods provide nearly the 
same accuracy, but at all less stringent thresholds SiteGA outperforms ARGO. 

• both methods integration in the most important threshold area (TP < 60 %) 
allows to get higher performance against each one taken separately. 

Threshold assignment procedure was based on the control data of bootstrap procedure 
(Fig. 1). Since accuracy estimation shows us very low prediction capacity (Fig. 1) we 
should apply a stringent enough threshold for analyzing real data.  

We have chosen the threshold corresponding to TP = 0.14 and FP = 0.05 (Fig. 1, 
arrow). Then ARGO and SiteGA methods were applied the to MPSS set. 

RESULTS AND DISCUSSION 

The MPSS data contained nonredundant set of 33 173 signatures (Nakano et al., 
2006). Defined above threshold allowed us to distinguish 700 distinct signatures. 

The presence of the known miRNA Registry families and their members in the MPSS 
data set and among the ARGO&SiteGA predictions is reflected in the Table 1. MPSS data 
contained 78 miRNAs belonging to 22 families. These miRNAs partitioned to 18 families 
presented in the training set and 4 other families. We predicted exactly 28 miRNAs 
belonging to 15 (83 %) families from 18. 

Table 1. The correspondence of known miRNAs families with the nonredundant MPSS data set and 
ARGO&SiteGA predictions 

 No. of sequences No. of miRNA families No. of miRNA 
sequences belonging  

to the families 
MPSS 33 173 22 78 
ARGO&SiteGA 
prediction 

700 15 28 

 
Moreover, we came to the following: 
Among the presented above ARGO&SiteGA predictions we found one new member 

for each of known miRNA families such as 163, 165/166, 172, and two members for each 
of 393 and 401 families. We revealed the rules of variability for known miRNAs within a 
family, variability occurs for the first two, 9th, 12th and the last three-four nucleotides in 
miRNAs with the conservation of other nucleotides. Only nucleotides at the permitted 
positions varied in the novel predicted members of known miRNA families. Essentially, 
that miRNA 163 was absent in the training set. 

The results of integrated ARGO & SiteGA method application allowed us to predict 
50 novel families totally compiling 93 miRNAs. For 34 from these 50 families we 
succeeded to identify the perfect complementary mRNA targets (McGinnis, Madden, 
2004), which is the certain criterion for miRNAs recognition. Among these targets there 
were the known Arabidopsis genes, such as SPATULA, APETALA3, ETTIN, ARF2, 
ARF3 and ARF4, WOL (CYTOKININ RESPONSE 1), AHK4 for histidine kinase, 
EMF2, SPY, MYB51, CCA1 and others. 
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SUMMARY 

Motivation: The algorithms aimed to the transcription factor binding sites (TFBSs) 
recognition are sensitive to context variability or to the physical-chemical, or to the 
conformational DNA features. The task of method development integrating the results of 
different recognition programs is the challenging one. 

Results: We developed the ExpertDiscovery system that finds the hierarchically 
complicating set of complex signals. It provides the powerful tool to construct the model 
of regulatory region generalizing the results of different programs. Besides, the system is 
an independent tool to predict the TFBSs. In the paper we demonstrate that 
ExpertDiscovery outperforms the optimized positional weight matrix (PWM). 

Availability: http://math.nsc.ru/AP/ScientificDiscovery/pages/projects.html. 

INTRODUCTION 

Eukaryotic regulatory regions are characterized by complex modular hierarchical 
structure and as the first level of organization possess the TFBSs. A pair of neighboring 
TFBSs organizes the so called composite element and in that case their joint action 
appears to be synergetic and different from if they act independently (Kel-Margoulis et 
al., 2002). The up next level of organization consists of promoters, silencers and 
enhancers. The block like organization of 5′-regulatory regions means the existence of 
alternative promoters generally located on a considerable distance from each others. 
Block-hierarchical structure of eukaryotic regulatory regions provides flexible regulation 
on the level of transcription by switching separate elements. 

Thus each level of organization states its own task in front of investigators. First of all, 
there is the task of TFBSs prediction, methodologically difficult by itself due to the high 
variety of DNA binding proteins and the tissue- and stage-specific mechanisms of 
regulations. The up next task is the TFBSs pattern discovery, in other words, the task of 
promoter localization belonging to the certain functional class according to its 
transcription regulation specificity (Qiu, 2003).  

The problem of regulatory region analysis challenges the Data Mining and Machine 
Learning approaches. Machine Learning algorithms aspiring to the bioinformatics tasks are: 
decision trees, neural network, Hidden Markov Models, genetic algorithms, etc. (Tan, Gilbert, 
2003). The traditional approach to predict TFBSs is the positional weight matrix PWM, 
indeed a very powerful tool, but still has some drawbacks and limitations. (Stormo, 2000). 



78 Part 1
 

ExpertDiscovery system (Vityaev, Shipilov, 2006), presented in the paper, finds the 
hierarchically complicating set of complex signals in the language of first order logic. The 
main advantage of ExpertDiscovery system is that it provides a powerful tool to construct 
the model of regulatory region generalizing the results of different programs. 

METHODS AND ALGORITHMS 

In “ExpertDiscovery” system the law-like rules appear to be the complex signals 
characterized by the set of parameters: conditional probability value, significance level 
(according to Fisher criterion), positive/negative coverage (the number of sequences that 
satisfy the complex signal). The complex signal definition is introduced recursively. 

Definition 1.  
1. The elementary signal (term, e.g. nucleotide, oligonucleotide) is the complex signal; 
2. The result of predicates REPETITION, ORIENTATION, INTERVAL, DISTANCE 

implementation to the complex signal is the complex signal, i.e.: 
• REPETITION N times ( min max2 N N N≤ ≤ ≤ ) of the complex signal is the complex 

signal. The distance between the neighbor complex signals varies in the user 
specified range; 

• ORIENTATION (forward, symmetric, reverse) of the complex signal is the complex 
signal; 

• location of the complex signal (relative to the transcription start) restricted to the 
certain INTERVAL is the complex signal; 

• a pair of ordered complex signals located on some DISTANCE from each other is 
the complex signal. DISTANCE varies in the user specified range. 

 

Figure 1. Complex signal hierarchical tree.The bold nucleotides-terms (denoted as “T”) present how the 
indeed complex signal projects on the sequence. Let us follow the left branch of the tree. The nucleotide 
G is located from T on some distance, varying in the user-specified borders, this complex signal is 
located from A on the prescribed distance, and this complicated signal is REPEATED along the DNA 
length. The REPETITION of the complex signal is the complex signal. 

 
According to the “Discovery” methodology ExpertDiscovery step by step complicates 

the current complex signals and finds all chains of nested signals. The complication is 
realized in a sense that the terms in the complex signal notation (Fig. 1) are replaced by the 
predicates REPETITION, ORIENTATION, INTERVAL, DISTANCE. The current signal 
becomes complicated, if the new complicated signal possesses the higher conditional 
probability value and the lower significance level (according to Fisher criterion). Essentially 
the complex signal may be expressed like the hierarchical tree (Fig. 1). 
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RESULTS AND DISCUSSION  

ExpertDiscovery system finds the hierarchically complicating set of complex signals. 
The main advantage of ExpertDiscovery system is that it provides a powerful tool to 
formulate the verifiable hypothesis, to choose the language of prediction. First of all, you 
are free to organize the most suitable to the data domain list of predicates that would 
participate in the complex signal notion. Second, ExpertDiscovery is able to find the 
regularities connecting the results of different recognition programs. As the elementary 
signals the complex signals are based upon you can take, for example: 

1. putative functional sites; 
2. degenerate oligonucleotide motifs (Vishnevsky, Kolchanov, 2005); 
3. sites with conservative conformational or physical-chemical features (such as 

double-helix angle twist, DNA melting temperature) (Oshchepkov et al., 2004); 
4. secondary structure element (Z-DNA, RNA hairpin); 
5. low complexity region (polytracks) (Orlov, Potapov, 2004). 

These properties of ExpertDiscovery system provide the powerful tool to solve the 
complicated task – constructing the model of regulatory region generalizing the results of 
different programs. Moreover, the system is realized in the interactive mode with the feedback 
possibility, being in the dialogue with the system one can visualize the complex signal, i.e. to 
look through the hierarchical tree of the complex signal (Fig. 1) and to observe how the 
complex signal is projected to the data. The system allows to edit the complex signals, to 
manipulate the predicate’s degrees of freedom (for example, the number of REPETITIONS, 
the range of INTERVAL). 

As an example of ExpertDiscovery system implementation we performed the accuracy 
comparison of the system and the PWM according to bootstrap procedure. The train data 
set (sequences of SREBP BSs with flanks) was extracted from the TRRD database 
(Kolchanov et al., 2002). Totally, the positive training set contained 38 sequences. First of 
all, we tried the PWM on different sequences lengths as it was described in the current 
issue (Levitsky et al., this issue) to reach the highest PWM recognition accuracy. When 
the optimal sequence length for PWM was clarified and was equal to 18 nucleotides, we 
prepared the positive training set containing sequences of SREBP BSs of the same length. 
Negative training set consisted of 20 000 randomly generated sequences with the same 
frequencies as in the positive set (Fig. 2).  

   

Figure 2. The hieratical tree of one of the most significant complex signals discovered for the SREBP BSs 
training data. Starting with the “Distance from 0 to 0 taking into account order” the tree branches to “Distance 
from 2 to 2 taking into account order” and “Distance from 3 to 3 taking into account order” and so on. At the 
left of the figure you can see how this signal is presented on the sites sequences of 18nt length (bold, capital).  
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The positive training set was randomly sampled 7 times into the new subsets each 

contained 32 sequences. The PWM and ExpertDiscovery methods trained on the basis of 
these subsets were applied to the rest sequences (control subsets). We counted the false 
positives (FP) and the false negative (FN) rates relying on the negative and control 
sequence samples correspondingly (Table 1). The score of the sequence was equal to the 
negative sum of the significance levels of the regularities the sequence satisfies to. 

 

Table 1. False positive rates for PWM and ExpertDiscovery provided the same FN rates 
FN rate FP rate PWM FP rate ExpertDiscovery 
58% 7.4E-04 2.0E-04 
54% 7.9E-04 3.5E-04 
50% 8.2E-04 7.0E-04 
46% 8.6E-04 8.2E-04 
42% 9.9E-04 1.0E-03 
38% 1.8E-03 1.3E-03 
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SUMMARY 

Motivation: The main goal of TRRD (Transcription Regulatory Regions Database) 
development is the most complete and adequate description of the structural and 
functional organization of transcription regulatory gene regions in eukaryotes based on 
the data obtained experimentally. 

Results: The overall information contained in the current TRRD release is 
represented as eight libraries: TRRDGENES, TRRDUNITS, TRRDEXP, TRRDSITES, 
TRRDFACTORS, TRRDLCR, TRRDSTARTS, and TRRDBIB. TRRD compiles the 
data on 2344 genes, 14 407 patterns of their expression, 3490 regulatory units, and 10 135 
transcription factor binding sites associated with them. This database contains only 
experimentally confirmed information. TRRD is filled in by manual annotation of 
scientific publications. The data incorporated into TRRD is a result of annotation of 7609 
scientific papers. The main tool for searching TRRD and navigation in it is SRS. A large 
number of indexed fields in the SRS version of TRRD allow the user to generate complex 
queries both within individual libraries and involving several libraries. TRRD has 
thesauruses that provide additional options for data access. The number of databases 
linked to TRRD has been increased. 

Availability: http://www.bionet.nsc.ru/trrd/. 

INTRODUCTION 

The structure–function organization of regulatory regions in the genes transcribed by 
RNA polymerase II is typically very intricate. The presence of alternative promoters and 
remote regulatory regions localized to both the 5′- and 3′-gene–flanking regions as well as 
to introns and exons are typical of the numerous genes studied so far. Active contributors 
to combinatorial gene regulation are the structural elements of core promoters (Smale, 
Kadonaga, 2003). Transcription factor binding sites within a regulatory unit (promoter, 
enhancer, or silencer) may be organized in functional modules that determine one or 
another expression pattern of a gene. One more functionally important characteristic is the 
multiple transcription starts. This particular information may be very important, as 
individual transcription starts of one promoter are frequently used for producing 
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transcripts in different tissues or under different conditions (under the action of inducers, 
at various ontogenetic stages, etc.). 

All these facts clearly indicate that the description of an integrated system of 
transcription regulation requires the comprehensive information about the regulatory 
elements of the gene. Creation of collections of experimentally discovered data on the 
regulatory elements acting at all levels is absolutely necessary for both forming the 
concepts of what is the nature of regulation of individual genes and developing the 
computer methods for prediction of regulatory elements, construction of gene networks, 
and functional genome annotation. TRRD, which we are presenting here, is a unique 
information resource that is developed aiming to provide an integrated description of 
transcription regulation of the eukaryotic genes transcribed by RNA pol II. The database 
is being constantly supplemented with new information, and the TRRD format is being 
permanently developed. Based on the information contained in TRRD, tools for analyzing 
regulatory regions of the genes transcribed by RNA pol II were developed. 

Structure of the TRRD database and data source 
All the information contained in TRRD2 is distributed between eight interconnected 

libraries. The TRRDGENES is the central, integrating library, which compiles the 
information identifying the gene, internal references to other TRRD libraries, and 
references to external databases and resources as well as hierarchically organized 
representation of the regulatory elements of all levels. The rest information tables of 
TRRD are TRRDSITES collating the information about transcription factor binding sites; 
TRRDUNITS describing regulatory units (promoters, enhancers, and silencers); 
TRRDLCR containing the structure–function characteristics the locus control regions 
(LCR); TRRDSTARTS containing the data on transcription initiation starts; TRRDEXP 
compiling the description of the qualitative specific features of gene expression; and 
TRRDBIB containing the bibliographic information. The description of information fields 
was given in detail previously (Kolchanov et al., 2000, 2002). TRRD is filled in by 
manual annotation of scientific papers. The database contains only experimentally 
confirmed information obtained in experiments of various types (http://srs6.bionet.nsc.ru/ 
srs6bin/cgi-bin/wgetz?-page+FieldInfo+-lib+TRRDSITES4+-bf+ExperimentCodes). The 
data input is standardized via the system of controlled vocabularies. 

RECENT DEVELOPMENTS 

Development of the TRRD 7.0 format 
The format of TRRD is being constantly developed to enhance the search of the 

database and simplify the data access. In TRRD release 7.0, the TRRDGENES library 
contains a considerably larger number of links to external databases: in addition to the 
previously available references to SWISS-PROT and EMBL/GenBank, note the links of 
the current release to Entrez Gene, GeneCards, MGI, RGD, FlyBase, and MaizeDB 
(overall, more than 20 databases). 

A new library, TRRDSTARTS, was developed. This library compiles the data on the 
experimentally determined transcription start sites of genes. TRRDSTARTS contains the 
absolute genome coordinates of the major and minor transcription starts of genes (with 
indication of the chromosome and the release of genomic database).  

The format of TRRDSITES library was extended. A new field, PreferredName (NP), 
was added; this field contains the standard (preferred) site name. The field PreferredName 

 
 

2 In the public version of TRRD, a number of information fields are not available, in particular, the 
sequences of transcription factor binding sites (TFBS) and regulatory regions, their localization in the 
corresponding entries of EMBL or GenBank database of nucleotide sequences, and the TFBS 
localization relative to a particular reference point within the gene. 
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is filled in automatically based on the data from the field TF of the block FACTOR, 
connected to this site. In this process, a specialized vocabulary of transcription factors is 
used, where the relations (the first order hierarchy and synonymy) between the names are 
fixed too. Thus, a query to the field PreferredName gives the possibility to obtain the 
entire information contained in TRRD that is related to the transcription factor binding 
sites of the user-specified type independently of what synonymic factor names were used 
in the query. 

The TRRDFACTORS library was revised. The vocabularies of transcription factors 
were unified to assign a unique identifier to each factor. Description of the subunit 
composition for multimeric factors is provided. 

The extension of TRRD content  
TRRD is filled up constantly with the new information. The number of entries in 

TRRD release 6.0 (Kolchanov et al., 2002) and the current release 7.0 (as of September 
01, 2005) are listed in Table 1. 

Table 1. The information content of TRRD 
Including the species (%) Library name Number of 

entries in 
release 6.0 

Number of entries in 
the current release 7.0 Human Mouse Rat Others 

ТRRDGENES 1167 2344 32 22 15 31 
TRRDUNITS 1714 3490 36 19 14 31 
TRRDEXP 5335 14 407 37 37 18 18 
TRRDSITES 5537 10 135 36 18 14 32 
TRRDBIB 3898 7609 37 21 16 26 

 
The sections on a number of subjects are being developed in TRRD that include genes 

united according to various functional characteristics. Each of the sections contains a 
group of genes expressed under certain conditions or involved in a certain process. 
Overall, nine sections were described earlier (Kolchanov et al., 2002). At present, TRRD 
contains 18 sections of this type (http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/ 
sections1.shtml). These sections are also a tool for quick access to the information 
contained in TRRD. 

New possibilities for access to TRRD data 
SRS (Sequence Retrieval System) version 6.1.3.11, which provides searching for 

information over 132 indexed fields, is the main tool for accessing TRRD. In addition, 
several specialized search systems were developed. These systems are based on the 
controlled vocabularies of tissues, cells, organs, developmental stages, external stimuli, 
and transcription factors, on the one hand, and thesauruses on organs and tissues in 
mammals (http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/thesaurus/), on the other. During 
operation of these searching systems, the relations of the types “general–particular”, 
“part–whole”, “synonymy”, etc., are realized. The queries to the SRS version of TRRD 
are realized not only according to a specified term, but also by all the related terms 
(daughter with reference to the query term) in the corresponding vocabulary as well as by 
all the synonyms simultaneously. These searching systems (http://wwwmgs.bionet. 
nsc.ru/mgs/gnw/trrd/thesaurus/search.html and http://wwwmgs.bionet.nsc.ru/mgs/gnw/ 
trrd/thesaurus/search_hidden.html) provide (1) search for the genes induced (or repressed) 
by an external stimulus; (2) search for the genes expressed in a specified organ, tissue, 
cell type, or stage of organism development; (3) a combined search for the genes 
expressed in a specified tissue, organ, or cell type when induced by a specified external 
stimulus (simultaneously); and (4) search for the genes or sites regulated by a specified 
transcription factor. 

New tools for analysis of DNA sequences using TRRD 
Three new tools for prediction of transcription factor binding sites and promoters were 

developed based on the information collected in TRRD: (1) SITECON (Oshchepkov et 
al., 2004) and SiteGA (Levitsky et al., 2006) for site recognition and (2) ARGO 
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(Vishnevsky, Kolchanov, 2005) for the detection of degenerate motifs and large-scale 
recognition of eukaryotic promoters. 
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SUMMARY 

Motivation: Combination of computer-assisted genome annotation with the large-scale 
experimental research is helpful for determination of the functions of genes, which are not 
studied yet. The task of searching for target genes of interferon (IFN)3 induction is of 
intense interest. IFNs modulate the operating of immune system, they exert antiviral, 
antibacterial and antitumoral effect. An important impact in functioning of interferon 
system is produced by transcription factors ISGF3, STAT1, and IRF1. 

Results: By analyzing localization of binding sites of 20 various transcription factors 
in regulatory regions of genes referring to different functional groups, it was estimated 
that the regions from -500 to transcription start site of IFN-inducible genes are enriched 
by the binding sites for transcription factors ISGF3, STAT1, and IRF1. We have 
developed the methods of recognition of these transcription factor binding sites, as well as 
the methods of recognition of IFN-inducible promoters and enhancers. 

INTRODUCTION 

Interferons refer to the class of cytokines. They possess by a wide spectrum of 
biological activities. For example, type I IFNs, in particular, IFNs-α and IFN-β, exert 
antiviral, antiproliferative, and antitumoral effect: they activate the cells of immune 
system and modulate cell differentiation (Pestka et al., 2004). The type II IFN, IFN-γ, 
makes great impact into development of antibacterial and antiparasitic responses (Decker 
et al., 2002). IFN-γ was also shown to participate in development of autoimmune state 
(Baccala et al., 2005). When IFNs interact with the cell surface receptors, they activate 
the JAK-STAT signal transduction pathway. As a result of this process, ISGF3 and 
STAT1 transcription factors are activated by type I IFNs and IFN-γ, respectively 
(Kalvakolanu, 2003; Uddin, Platanias, 2004). Transcription factors referring to the family 
of IRF (Interferon Regulatory Factors) (Mamane et al., 1999) also play an important role 
in functioning of the IFN system (Barnes et al., 2002). Interaction of ISGF3, STAT1, as 
well as of some IRFs with the binding sites in regulatory regions of IFN-stimulated genes 
(ISG) causes enhancement of transcription of these genes. 

 
 

3 The abbreviations used are: IFN, interferon; ISG, Interferon-Stimulated Genes; ISGF3, Interferon-
Stimulated Gene Factor 3; IRF, Interferon Regulatory Factor; STAT, Signal Transducer and 
Activator of Transcription. 
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We have developed the methods aimed at recognition of ISGF3, STAT1, and IRF1 
binding sites that are of considerable importance for the functioning of the IFN system. 
By analysis of putative binding sites of 20 different transcription factors, we have 
revealed regularities in localization of sites in promoter regions of ISG. Based on these 
regularities, we have designed the methods for recognition of IFN-inducible promoters 
and enhancers.  

METHODS AND ALGORITHMS 

For recognition of transcription factor binding sites that are of primary importance for 
the functioning of the IFN system, in particular, ISGF3, IRF1, STAT1, NF-κB, and AP-1, 
we have mainly applied the matrix method based on the additive, or multiplicative 
recognition function. In order to obtain the frequency and weight matrices, we have 
developed the special iterative approach that was applied to the different samples of 
binding sites extracted from the TRRD database (Kolchanov et al., 2002). The size of the 
most samples was varying in the range from 30 to 70 sequences. 

TO determine the weight matrix, we have used three methods of the multiple 
alignment, which are described by a single generalized algorithm within the frames of the 
Gibbs sampler approach. The algorithm of the methods suggested is iterative, so that each 
iteration consists of two steps. For operating of this algorithm, we need the initial 
approximation for the frequency matrix F=(fij), i={A,C,G,T}, j=1,…,l, where l denotes 
the length of a site and fij is the frequency of the occurrence of the nucleotide i at the j-th 
position of the aligned sequence j. At the first step of iteration, the frequency matrix F is 
rearranged by means of transformation T into the weight matrix W=(wij): W=T(F). By 
moving along the first sequence of the sample with the step of 1 bp, we calculate the 
value of recognition function G. For generating three methods of alignment, we have used 
the following variants of recognition function G and rearrangement T of the frequency 
matrices into the weight matrices: 

1st method.    
      
T: wij =fij / (fAj + fCj + fGj + fTj),                  (1) 
 
For the nucleotide sequence, S=s1,…,sl, with the length l, the recognition score is 

calculated by using the additive function  
 
 G (s1,…,sl)  = .

1,...,
i

ii l sw
=
∑                    (2) 

 
2nd method. We use the same rearrangement T as in the first method. The function G 

for the sequence S is calculated in accordance with multiplicative function  
 
  G (s1,…,sl)  = 

.
1,...,

i
ii l sw

=
∏  

 
3rd method. The process of generating the weight matrix consists of two stages. First, 

we use transformation indicated in description of the first method. Then for each position  
j, j = 1,…,l we calculate the entropy Ej by the formula  

 
Ej = - ∑

= TGCAi ,,,

 wij ґ ln (wij).                   (3) 
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The final weights wij* are obtained by renormalization of initial weights wij by the formula  
 
wij* = wij / Ej*,                        (4) 
 
where Ej* is a modified entropy of the j-th position, that is, Ej* = {Ej,  if  Ej>0.1;   0.1 

otherwise}. 
The modified entropy is introduced due to necessity to avoid the formal division by 

zero in the formula  (3) under the treatment of completely conservative site positions. 
For calculation of the score, we use the same additive function (2) as in the first 
method.  

The threshold values of the 1st type errors were estimated with help of training 
samples by the jack-knife method. The threshold values of the 2nd type errors were 
estimated with help of control samples taken from GenBank. 

RESULTS 

In Table 1, the threshold values of the 1st and 2nd type errors are given (α1 and α2,, 
respectively) for the methods for recognition of transcription factor binding sites 
important for the functioning of ISG. In the last column of the Table 1, the level of false-
negatives in the control samples is presented. In this case (last column), the control 
samples were compiled from the sequences of natural sites from the TRRD database, 
which were not included into the training samples. 

Table 1. Threshold values for recognition of binding sites for transcription factors AP-1, IRF1, ISGF3, 
NF-κB, and STAT1  

Transcription factor 
binding site 

First type error  (α1) Second type error (α2) Independent control 
(false-negatives) 

AP-1 37 % 2.81E-03 no data 
IRF1 24 % 9.59E-05 31.8 % 
ISGF3 25 % 6.84E-04 46.2 % 
NF-κB 42 % 5.32E-04 70.8 % 
STAT1 43 % 8.82E-05 84.6 % 

 
 
Comparison of recognition AP-1, IRF1, ISGF3, NF-κB, and STAT1 binding sites by 

the method suggested and by some other methods is given in the supplementary material 
(http://wwwmgs.bionet.nsc.ru/mgs/papers/ananko/BGRS_2006/supplementary.htm). 

In order to find out specific organization of ISG regulatory regions, we have 
performed comparative analysis of three functional groups of genes. Except ISG, we have 
taken in analysis glucocorticoid-regulated genes (GR, 39 genes, the set is compiled by 
T.I. Merkulova) and  lipid metabolism genes (LM, 56 genes, the sample is compiled by 
E.V. Ignatieva). In the supplementary material (http://wwwmgs.bionet.nsc.ru/mgs/papers/ 
ananko/BGRS_2006/supplementary.htm), some regularities are illustrated, which differ at 
most between ISG and “accidentally chosen” human genes extracted as a control sample 
from the EPD database and the genes of the other functional groups. 

While designing the recognition method for IFN-inducible genome regions, we have 
performed the estimation of occurrence of different site combinations. As a combination, 
we consider the simultaneous presence of two or three sites localized at a given distance 
from each other and/or in the region pre-ordered relatively transcription start. The 
presence of the definite types of sites at the distance given without associating them with 
position of transcription start has enabled us to reveal IFN-inducible enhancers and, 
possibly, alternative promoters of genes, for which localization of transcription start was 
not determined. 
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In total, we have analyzed several hundred of site combinations, out of which we have 
selected 158 sites statistically differing by occurrence from that of the control samples. By 
using these combinations and information about the type and induction level of each gene 
from the control sample, we have designed three methods aimed at recognition of IFN-
inducible regions of genes: 

method 0 – recognition of any IFN-inducible DNA region (stimulation by any IFN);  
method 1 – recognition of DNA regions induced by type I IFNs (IFN-α, IFN-β); 
method 2 – recognition of DNA regions stimulated by type II IFN (IFN-γ).  
The methods were independent on the training samples, because the exclusion of 

training sites from the results didn't change the character of site distribution (data not 
shown). Details for each method are given at http://wwwmgs.bionet.nsc.ru/mgs/papers/ 
ananko/BGRS_2006/supplementary.htm. 

DISCUSSION  

With the help of the methods developed, we have studied the DNA sequences from 
-1000 to +1000 bp relatively transcription start site of genes referring to different 
functional groups under various threshold values of the methods. The best recognition 
values were obtained by applying the method 0, which is applicable for recognition of the 
gene regions regulated by any IFN. Under the threshold value of the function equaling to 
0.4, we have recognized 36 % of genes from the learning sample; and from 5 to 12 % of 
genes from the other gene samples. If the threshold value of the function was increased up 
to 0.7, the recognition in the learning sample falls down to 12.5 %, whereas in the rest 
samples, it was equaling to at most 1 %.  

Studying of the human genome by the method 2 has enabled to detect 90 genes 
under the threshold value equaling to 0.65. These genes compiling 1 % out of the 
sample studied are induced by IFN-γ with 85 % probability. If the threshold value of the 
function is decreased to 0.3, then the recognition accuracy has grown up to 12.3 % (in 
total, 1023 genes). The similar studies developing the method for recognition of genes 
stimulated by IFN-γ were reported in 2004 (Liu et al., 2004). In accordance with the 
estimates made by the authors, 65 % of genes predicted by this method are really 
induced by IFN-γ. 

Application of the methods developed for computer genome annotation in 
combination with microarray analysis will be helpful in determining the functions of 
genes, which are not studied yet. 
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SUMMARY 

Motivation: To study possible mechanisms of cis-antisense regulation in human 
genome, we carried out a global microarray-based co-expression analysis of a large 
number of cis-antisense gene pairs. We focused on cis-antisense expression patterns in 
distinct breast cancer types.  

Results: We identified common positive co-regulation patterns which reproducibly 
expressed in the human breast cancer cells and specific positive co-expression patterns 
which uniquely associated with low- and in highly-aggressive types of breast cancer cells. 
The enrichment of co-regulation patterns of gene pairs in the same loci in compare to 
random gene pairs in different loci of the human genome and absence of other regulatory 
modalities allowed us to suggest that cis-antisense transcripts might be controlled by (i) 
distant mechanisms associated with chromatin remodeling and by (ii) local mechanisms 
due to mutual local de-repression of mRNA synthesis initiated by temporal triplex-
forming mRNA which can form DNA transcription bubbles. 

INTRODUCTION 

Pairs of genes transcribed from opposite strand of the same locus with antiparallel exon-
exon overlaps are commonly referred to as cis-antisense pairs. It is a widely-accepted 
paradigm that genes in a cis-antisense pair may regulate each other, pre- or post-
transcriptionally. Translational down-regulation of a sense transcript by antisense RNA 
induction has been observed (Vanhee-Brossollet, Vaquero, 1998; Chau et al., 2002). It is 
assumed that hybridization of two RNAs cis-antisense to one another results in translation 
blockage via steric hindrance and/or RNAase-mediated degradation of the duplex (Vanhee-
Brossollet, Vaquero, 1998). At the transcriptional level, the two members of the cis-
antisense pair can compete for transcription from the same locus (Chau et al., 2002). 
Alternatively, these genes may be controlled by other (e.g. epigenetic) mechanisms. In an 
attempt to distinguish between these regulatory scenarios, we carried out global gene co-
expression analysis of a large number of cis-antisense pairs based on microarray data from 
different human cell types. We focused on regulatory patterns in human breast cancer.  

Since cis-antisense pairs affect up to 25 % of genes in mammalian genomes, 
understanding their regulatory significance is a biological imperative. Previous studies 
have emphasized post-transcriptional antisense-mediated repression scenarios in both 
prokaryotes and eukaryotes, characterized by repression of generally protein-coding sense 
transcripts by their cis-antisense counterparts. This paradigm was challenged by the 
international FANTOM3 consortium (Katayama et al., 2005), which established that co-
regulation (i.e. a situation where the two members of an sense-antisense pair are either 
both highly expressed or both repressed) was the dominant scenario for a small and biased 
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sample of cis-antisense pairs profiled in cell line system perturbation experiments under 
specific condition. We aimed to resolve the repression /co-regulation controversy, since it 
is relevant to pre-transcriptional (e.g. chromatin remodeling) vs. post-transcriptional (e.g. 
ncRNA-mediated degradation of sense via RNA duplex formation) mechanisms of cis-
antisense transcriptional control. 

MATERIALS AND METHODS 

To link sense-antisence transcript pairs with reliable expression data we revisited 
chromosome coordinates of Affymentrix GeneChip U133 probesets in the human 
genome. Well-defined U133 (A and B) Affymetrix probesets have been selected using 
BLAT alignment of ~44,500 original Affimetrix sequences on the human genome. We 
have removed 2500 multiple mapped and other erroneous probesets (Orlov et al., this 
issue). Through genomic alignments of EST and cDNA sequences and after manual 
verification of transcript orientation, splice sites, and polyadenylation signals 4511 cis-
antisense transcript (SAT) pairs have been selected (done by Dr. L. Lipovich’s group at 
GIS). Then we identified 2,816 human cis-antisense transcript pairs matched by the 
filtered 4,458 Affymetrix probesets. The probesets pairs represent 1450 cis-antisense 
transcript pairs (72 % mRNA, 19 % spliced EST pairs, 9 % RefSeq).  

We stored information about Affy probeset sequences matched to cis-antisense 
gene/mRNA/EST pairs sequences, probesets orientation, their map on chromosome, 
genome characteristics of the sense-antisense gene pairs, and annotation information 
(RefSeq, mRNA, EST, chromosome coordinates) in our local SAT database.  

We define convergent cis-antisense pairs as gene pairs whose ends overlap but starts 
does not (tail-to-tail); divergent pairs as gene pairs whose starts overlap but ends does not 
(head-to-head), and complex pairs as those of any other configuration (Fig. 1). The 
numbers of gene pairs that expression was measured in microarray experiments is noted 
below corresponding schemes. The tail-to-tail topological type was most common type of 
pairs in our dataset (Fig. 1). 

 

Figure 1. Three types of exon-to-exon cis-antisense pairs. 

Tumor samples were derived from large cohorts (in total 251 patients) from primary 
human breast cancers and 251 tumor representative transcriptomes have been profiled and 
compared using U133A/B Affymetrix microarrays (NCBI GEO: GSE3494). The cancer 
samples of the patients were split into four groups (G1, G2a, G2b, G3): G1 and G3 groups 
with histologic grades I and II tumors, respectively; G2a and G2b groups are the sub-
types of histologic grade II tumors, which have been identified based on genetic re-
classification of the grade II breast cancer tissues resulting in computational pattern 
recognition of small and robust prognostic gene signatures (Ivshina et al., 2005). The 
order of G1, G2a, G2b and G3 corresponds to aggressiveness of breast cancer.  

For every probesets presenting cis-antisense gene pair we calculated rank Kendall τ 
correlation coefficient of expression levels measured in the group of the breast cancer 
patients. We calculated correlation coefficients for all cis-antisense gene pairs and 
estimated statistical significance of these coefficients for each of 4 groups. Then we 
calculated the number of the positive and negative correlation coefficients for the 4 
groups and the number of statistically significant coefficients (at fixed levels of  p = 0.01 
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and p = 0.05). To simulate background value of correlation coefficients the same 
procedure was repeated for random gene pairs in the human genome. 

RESULTS AND DISCUSSION 

The total number of significant within-pair correlation coefficients in the expression 
levels of our cis-antisense paired genes was much larger than the number of the 
correlation expected by chance. We studied separately the subset of well-mapped sense-
antisense pairs. This subset represents 182 SAT pairs which have at least one locus 
common for exons of the given gene pair and all the overlapped exons were mapped by at 
least one Affymetrix sequence. This small sub-set of cis-antisense pairs we selected in 
order to maximize a reliability of detection of complex signals from splice variant 
isoforms of a gene. Table 1 presents the numbers of sense-antisense pairs which exhibit 
correlations of gene expression values common for all 4 groups of patients (G1, G2a, 
G2b, G3). Table 1 shows numbers of positive (τ > 0) and negative (τ < 0) correlations 
within sets. It also shows that only positive correlated pairs are significant (p < 0.005). 
Moreover, the number of significant (p < 0.05) negative correlations does not differ from 
the number expected by chance (data not shown). 

Table 1. Number of correlation coefficients for SAT pairs found in 4 groups 
 τ > 0 τ < 0 τ > 0 (p < 0.005) τ < 0 (p < 0.005) 
Subset of SAT pairs 71 5 12 0 
All SAT pairs 1758 284 352 0 

 
Thus, the number of significant positive co-regulated pairs dominates over negatively 

co-regulated pairs. Therefore, co-regulation of paired genes is the most prominent type of 
cis-antisense pair expression pattern in different breast cancer cell types. Our results agree 
with recent observations in mouse transcriptome which demonstrate frequent concordant 
regulation of sense/antisense pairs (Katayama, 2005). 

We furthermore identified two distinct sets of positively-correlated cis-antisense 
overlapped transcripts: permanently co-regulated gene pairs which exhibit positive 
correlation across G1, G2a, G2b and G3, and pairs specifically associated with each of the 
four groups. For instance, the RAF1/MKRN2 and CKAP1/POLR2I gene pairs represent 
the first set; interestingly, RAF1 is a key oncogene while MKRN2 is a transcription 
factor. The CR590216/EAP30 pair represents the second set (significant only in G3 
group; p < 0.05). EAP30 can be involved in the de-repression of transcription by RNA 
polymerase II (Schmidt et al., 1999).  

Our analysis reveals extraordinary reproducible positively co-regulated patterns for 
almost all cis-antisense loci. This allows us to suggest that cis-antisense transcripts might 
be controlled by global mechanisms associated with chromatin remodeling and/or mutual 
de-repression of synthesis of ribonucleic acids due to temporal RNA initiation of the 
triplex-forming DNA transcription bubble. Fig. 2 shows a hypothetical scheme, which 
illustrates the second model. 

Based on this model we assume that gene expression is a pulse random process and 
that transcription of mRNA from a given strand could facilitate initiation of transcription 
of a gene on the opposite strand. A positive correlation (co-regulation) of expression of 
the gene pairs on opposite strands might be explained by direct interaction of short RNA 
forming temporal helical structure containing three strands (Frenster, 1965). We assume 
that triplex forming poly(A)-negative RNA segments of SAT could establish a locally 
denaturized “bubble” (Fig. 2). As polymerase (PolII) advances along the opposite strand, 
the RNA segment is displaced/ destroyed by RNAase(s) and then two DNA strands can 
be re-annealed. This model predicts a periodic re-expression of transcripts of the both 
sense-antisense genes.  
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Figure 2. A hypothetical model of transcription activation of antisense mRNA by sense RNA segment.  
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SUMMARY 

Motivation: Development of methods to predict functional transcription factor binding 
sites (TFBSs) is very important for eukaryotic genes annotation. But the high false 
positive rate is a serious issue in attempts to reliably predict TFBSs. 

Results: We propose the combined approach to search for TFBSs. The approach 
compiled the SiteGA method that takes into account the interactions between different 
TFBS positions and position weight matrix (PWM) method. Both methods have been 
applied to four transcription factor (TF) types (IRF1, PPAR, SREBP and SF-1). The 
combined approach was tested on the set of the promoters from EPD database. The 
approach application allows revealing most reliable potential TFBS targets. 

Availability:  http://wwwmgs2.bionet.nsc.ru/mgs/programs/sitega/. 

INTRODUCTION 

Recognition of TFBSs by computer methods is an effective approach to the search and 
analysis of the regulatory gene regions. Widely used PWM model for DNA binding 
implies that there is some contribution from each base at each position and that the sum of 
all the contributions is above a certain threshold (Stormo, 2000). Nevertheless the weight 
matrix is severely limited by the assumption that positions in a binding site (BS) 
contribute additively to the total score (Benos et al., 2002; Zhou, Liu, 2004). As a result, 
the accuracy of the recognition sometimes is far too low for large-scale genome research. 
To overcome this drawback we combined the PWM method with SiteGA, which takes 
into account the interactions between different TFBS positions. We revealed that 
combined recognition might significantly potentate the recognition power. 

METHODS AND ALGORITHMS 

We used SiteGA (Levitsky et al., 2006) and PWM (Stormo, 2000) site recognition 
methods in our analysis. Samples of nucleotide sequences used in analysis are presented 
in Table 1. The train data sets (sequences with flanks with centrally located BS) were 
extracted from the TRRD database (Kolchanov et al., 2002). The SiteGA and PWM 
methods used the train sequences of almost the same length. The control BS sets (IRF1, 
PPAR, SREBP) were derived from TRRD and literature sources and were used for 
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thresholds setting. For both methods these settings corresponded to 50 % of true positive 
rates, which were estimated by the control BSs sets. To set thresholds for SF-1 BSs, we 
used two samples of vertebrate promoters, extracted from TRRD: (i) genes controlling 
steroidogenesis and their orthologs (STER+), this sample didn’t contain train BSs; (ii) the 
remaining genes which lack the experimentally approved SF-1 sites (STER-). The 
thresholds settings for SF-1 BSs were based on the restriction of predicted sites portion 
for set STER+ (i.e. approximately 20 % of sequences contained potential sites). The set of 
human promoters extracted EPD database (Schmid et al., 2006) were finally used for 
potential TFBS targets search. Thus for all TF types both methods (SiteGA & PWM) used 
coordinated by true positive rates thresholds settings. The estimates for false positive (FP) 
rates calculated by the random sequences (train data with preserved nucleotide content) at 
specified above thresholds are given in Table 1. 

Table 1. Samples of nucleotide sequences 
No. of sequence FP rate Sample type Sample 

name 
Sequence 
length, nt Train Control Test SiteGA PWM 

IRF1 56 30 29  3.0E-07 3.0E-06 
SF-1 25, 303 54   2.6E-05 5.7E-05 
PPAR 25 54 16  2.9E-04 1.6E-04 

TFBSs 

SREBP 18 38 8  6.1E-04 1.1E-03 
STER+,  
[-350;+50]1,2 400  70    

STER-,  
[-350;+50]1,2 400  1285    Promo-ters 

EPD,  
[-550;+50]1,2 600   1871   

1 – location relative to transcription start site; 2 – lacking the 5′- or 3′-flanks of nucleotide sequences 
completed with the symbol “n”; 3 – for SiteGA and PWM methods training, correspondingly. 

 
We applied nucleotide and dinucleotide PWM methods as follow. 

, , ln(p ).i j i j jw n= − ×  (1) 

Here ni,j is the count of nucleotide (dinucleotide) j in position i and pj is nucleotide 
(dinucleotide) j frequency for train set. We chose for each BS the best PWM type 
(nucleotide or dinucleotide). Only for SREBP BS nucleotide matrix was used as most 
accurate, for other BSs we used dinucleotide matrix. 

The training window length and location search implied the search among different 
sizes (from 10 to 60 nt) and  slightly shifted locations (Fig. 1), i.e. for each window size 
three locations were tested. The recognition accuracy estimate based on the standard jack-
knife test was used for window size and location selection. 

 

 

Figure 1. The scheme used for PWM method’s training window length and location search.  

The SiteGA method was implemented using of a genetic algorithm (GA) involving a 
discriminant analysis. The GA handled a population of individuals, which were defined as 
sets of N locally positioned dinucleotides (LPDs). Each LPD was specified by it location 
(a, b) within the analyzed window and type dj (j = 1, …, 16). The initial GA population 
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consisted of individuals of arbitrarily assigned LPDs. Then GA produced iterative 
mutations (Fig. 2a, b) and recombinations (Fig. 2c). The GA was based on the fitness 
maximization. Let us consider the real (1) and random (2) (obtained by shuffling of the 
real sequences) sequences sets. The fitness of an individual was given by the Mahalanobis 
distance R2({ nf }). 

2 (2) (1) 1 (2) (1)
,

1 1
({ }) {[ ] [ ]}.

N N

n n n n k k k
k n

R f f f S f f−

= =

= − × × −∑∑  (2) 

Here, N is total No. of LPDs, (1)
nf  and (2)

nf  are mean frequencies of the nth LPD 

calculated for the real and random sets respectively; 1
,n kS −  is an element of the matrix |S-1| 

inverse to the matrix |S|=|S(1)|+|S(2)|. These are the covariance matrices of the vectors of 
LPDs over the sequence sets 1 and 2. 

 

Figure 2. The elementary GA operations: a, b – mutations, c – recombination. a – change of LPD 
location ([a1, b1] → [a2, b2], the dinucleotide type d1 remains the same); b – change of LPD dinucleotide 
type (d1 → d2, the location [a1, b1] remains the same). c – exchange of two LPD {[a1, b1], d1} and {[a2, 
b2], d2} between two parent individuals (1 & 2), 1’ and 2’ – daughter individuals; LPD belonging to 
parent individuals corresponds to light and dark colors. 

The recognition function value was calculated for a nucleotide sequence X as follow. 

(2) (1) 1 (2) (1)
,2

1 1

1
2
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R

−
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ϕ = × − × + × × −∑∑    

 (3) 

The combined SiteGA & PWM approach application implies the obligatory BS 
recognition by both methods. 

RESULTS AND DISCUSSION 

The results of test EPD data analysis are given in Table 2.  
For SREBP BS both methods predicted nearly equal portions of sites (567 and 583). 

For IRF1 BS SiteGA was able to yield very small portion of predicted sites in 
comparison with PWM (29 against 95). For other BS (SF-1 and PPAR) differences in 
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predicted sites portions were not very noticeable. Our approach appeared to be the most 
accurate for IRF1 and SF-1 BSs (Table 1): in every case totally in whole EPD promoter 
set (1871 sequences) less than 30 putative sites were found (Table 2). Totally 25  
(1.5 %) and 20 (1 %) of EPD promoters contained correspondingly IRF1 and SF-1 
predicted sites. That observation may be very promising for large-scale genome 
analysis, since human genome contains at least tenfold greater number of genes than 
analyzed here EPD set. 

Table 2. The analysis of predicted TFBS density in EPD promoters by SiteGA, PWM, and combined 
SiteGA & PWM methods  
TF type SiteGA PWM SiteGA & PWM 
IRF1 29 (3.2E-05) 95 (1.0E-04) 27 (2.6E-05) 
SF-1 75 (7.7E-05) 148 (1.5E-04) 20 (2.1E-05) 
PPAR 315 (3.7E-04) 192 (2.0E-04) 106 (1.1E-04) 
SREBP 567 (5.8E-04) 583 (5.9E-04) 110 (1.1E-04) 

For each TF type the No. of predicted sites and its ratio to the total count of analyzed positions are given. 
 
 
The promoters which containing predicted by combined approach IRF1 and SF-1 BSs 

are given in Table 3. It may be concluded that combined method application allows 
significantly decrease false positive rate (Table 2) and it application gives opportunities to 
reveal the most reliable potential TFBS targets (Table 3). 

Table 3. Human promoters annotated in EPD which containing predicted IRF1 and SF-1 BSs by 
combined SiteGA & PWM approach 
Functional class SF-1 IRF1 

Known target CG/LH/FSH/TSH-α, 
CGI127, HSD3B2 

2'5'-oligoAsynt., complement f. B, 
IFNα 13, β-interferon, HLA B, IFI27, 
CEACAM1, SP100, IFI 54K, IFI 6-16 

Very possible target PBGD E E2P2, CDC42EP2, 
TRAP1, ACPP, PTGES2 BST2, APOL1 

Possible target FXR1, FXYD3, VAPA 
IL-4 (BSF-1), IL-5 (EDF/TRF), 
APOL3, TAPBP, POLD2, EIF3S7, 
PRG1, PHGDH, GLRX, C1QBP 

LRH-1 related (SF-1 only) 1 Glucagons, CTRB1, CPA2  

Unknown 
TCR vα HD-Mar, 
ATP6V0D1, RPS5, 
HNRPH2, SAT, STMN2 

Link, SDHD, RPL35A P1 

1 – LRH-1 is a close homolog of SF-1 (Fayard et al., 2004). 
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SUMMARY 

Motivation: In bacterial genomes antiparallel genes are common within one 
chromosome. At least in cases when one of the genes is highly expressed, their shared 3′-
untranslated region should be involved in transcription termination. At the same time, 
gene transcription very often entails the formation of DNA supercoils at this site.  

Results: Very long hairpins are found in some Actinobacteria downstream of highly 
expressed genes.  But these hairpins do not resemble known types of terminators involved 
in expression regulation. We suppose that they are involved in DNA relaxation and an 
uncharacterized termination mechanism. 

INTRODUCTION 

In Actinobacteria, gene expression is typically regulated on translation level through 
overlapping of ribosome binding site (Seliverstov et al., 2005), whereas in gamma- and 
alpha-proteobacteria the regulation follows classical attenuation scenario (Vitreschak et 
al., 2004). In most well studied bacteria, like Escherichia coli and Bacillus subtilis, 
operons end with transcription terminators, GC-rich hairpins with adjacent poly-U tract 
downstream. However, such terminators are rare or absent altogether from some bacterial 
taxa, like e.g. Cyanobacteria and Mycobacterium (Washio et al., 1998; Unniraman et al., 
2002). One might suppose that transcription termination in Actinobacteria involves 
alternative secondary structures of double-stranded DNA. 

In this work we sought for DNA structures putatively responsible for termination in 
3′-untranslated regions of highly expressed genes encoding tRNA, elongation factors and 
some important proteins.  

Structures found in 3′-untranslated regions of these genes allowed for better defining 
operon boundaries and predicting highly transcribed DNA regions (this problematic was 
discussed in detail in (Ishchukov et al., 2004)). Particularly, results of the search 
algorithm were used to reveal expressed paralogs. 

RESULTS 

Bacterial genomes were obtained from GenBank. Long hairpins are found in  
3′-untranslated regions of genes encoding tRNA and some proteins, being especially 
abundant in intergenic spaces between antiparallel genes, with one of them coding for 
tRNA. For example, in Propionibacterium acnes long hairpins are found downstream of 



100 Part 1
 
tRNA-Ala (ppa2421), tRNA-Arg (ppa2413), tRNA-Arg (ppa2189), tRNA-Asn 
(ppa2422), tRNA-Glu (ppa2432), tRNA-Lys (ppa0181), tRNA-Lys (ppa1961), tRNA-
Met (ppa2423), tRNA-Phe (ppa2454), tRNA-Pro (ppa2428), tRNA-Thr (ppa2412). In 
Corynebacterium efficiens long hairpins are found downstream of tRNA-Ala, tRNA-Arg, 
tRNA-Asp, tRNA-Leu, tRNA-Pro, tRNA-Ser. Moreover, such hairpins are found 
downstream of other six highly expressed protein-coding genes in P. acnes, six such 
genes in C. efficiens and five protein-coding genes in Mycobacterium bovis.  

A part of our data is presented in Table 1:  
 

Table 1. The numbers of hairpins with length equal or higher than L for leader regions (1),  regions of 
converging located genes (2), coding regions (3), regions of divergently located genes (4) are shown in second, 
third, forth and fifth columns, respectively 

L (1) (2) (3) (4) L (1) (2) (3) (4) 
Corynebacterium efficiens Mycobacterium bovis 
25 2 1 0 0 25 2 12 1 1 
23 2 2 0 0 23 3 15 1 1 
20 6 16 0 0 20 4 17 2 1 
17 23 37  5 1 17 12 21 6 2 
15 44 57 13 6 15 17 22 28 3 
10 182 121 960 27 10 188 37 1499 37 
Corynebacterium glutamicum Mycobacterium leprae 
25 0 1 0 0 25 5 0 2 1 
23 0 3 1 0 23 5 0 2 1 
20 2 16 1 0 20 8 1 4 1 
17 12 40 4 0 17 10 1 12 1 
15 29 59 8 0 15 14 1 27 2 
10 221 133 617 29 10 111 4 482 8 
Corynebacterium diphtheriae Mycobacterium avium 
25 0 2 0 0 25 1 1 0 0 
23 1 6 0 0 23 3 1 0 0 
20 2 14 0 0 20 4 4 0 0 
17 14 32 2 0 17 8 8 8 0 
15 24 48 7 0 15 17 19 24 3 
10 137 76 497 23 10 257 46 2197 66 
Propionibacterium acnes Mycobacterium tuberculosis 
25 0 0 0 0 25 4 11 3 1 
23 0 0 0 0 23 5 14 3 1 
20 0 2 1 0 20 7 17 3 2 
17 3 17 2 0 17 17 20 6 3 
15 8 27 3 0 15 24 21 24 5 
10 101 63 571 17 10 202 36 1519 30 

 
The length of a hairpin is the number of nucleotides in its shoulders. The numbers of 

hairpins with length equal or higher than L for leader regions (1),  trailer regions (2), coding 
regions (3), regions of divergently located genes (4) are shown in second, third, forth and fifth 
columns, respectively. Besides, the Table 1 shows only hairpins with loops shorter than 15 
nucleotides and with only one internal loop 2 nucleotides or less in length. Moreover, the left 
shoulder was not allowed to contain  regions complementary to those of the hairpin loop. 

Hairpins of 18–27 bp length (called abnormally long hairpins) are seldom found in some 
genomes (results shown for P. acnes). For each gene, its leader region was defined as a region 
no more than 300 bases in length and not crossing the bounds of neighbor genes. Transcription 
initiation site was not considered and is usually unknown. In the P. acnes genome, mass 
searches for long hairpins without bulges in 5′-untranslated regions of up to 300 bp length 
upstream of all genes contained in GenBank annotation resulted in detecting four hairpins with 
stem size exceeding 18 bp. Hairpins with stems longer than 28 bp were not detected in 
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intergenic spaces of this genome. Two hairpins were found with 27 bp, one – with 22 bp and 
one – with 18 bp-long stems. Here the first two are described. 

A hairpin with a 4 bases-long loop and 27 bp-long stem without bulges was detected 
in 3′-untranslated region immediately following the stop codon of elongation factor G at 
an 8-base distance. Downstream of the hairpin the gene of transmembrane protein 
PPA1874 is located. Both genes are of considerable length. 

The other hairpin is confined in between genes ppa1754 and ppa1753 encoding the 
alpha subunit of highly expressed succinyl-CoA synthetase and a putative transmembrate 
protein, respectively. 

DISCUSSION 

In bacterial genomes antiparallel genes are common within one chromosome. At least 
in cases when one of the genes is highly expressed, their shared 3′-untranslated region 
should be involved in transcription termination, which is probably mediated by the found 
hairpins. For instance, tRNAs genes are highly expressed because of intensive usage of 
their products in the cell. 

Besides, gene transcription entails formation of DNA supercoils, also in the  
3′-untranslated region, which are conventionally thought to be relaxed by topoisomerases. 
Although, in intergenic regions, with at least one gene highly expressed, an alternative 
process might be involved in DNA relaxation with the use of detected hairpins. 

In other words, in 3′-untranslated region of a highly expressed gene (especially if it 
belongs to a pair of antiparallel genes) one might expect to find a pair of hairpins forming 
the so called “cross” on two DNA strands. 

Comparative analysis of hairpins in orthologs of close species reveals high divergence 
of their primary structure and high conservation of topology, which implies severe 
functional constraints imposed on the hairpin secondary structure.  

These hairpins do not resemble known types of terminators involved in expression 
regulation.  Indeed, the Rho-independent terminator typically contains a U-rich region, 
and the Rho-protein binding site has a UC-rich region lacking hairpins. None of these is 
found in or nearby the detected hairpins. 
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SUMMARY 

Motivation: Attenuation regulation, particularly, in its classic form is well described 
on comparative genomic level using evidence from both datamining and experiment. 
Even being confronted with difficulties in choosing adequate parameter settings, 
developing a rigor and effective computer model of each attenuation type is a timely and 
important task. Such a model is prerequisite to in-silico choose between alternative 
hypotheses of any gene leader region, as well as to study attenuation mechanisms in 
conjunction and in comparison with the mechanism of protein-DNA interaction 
(repressor-activator).  

Results: An effective computer model of classic attenuation regulation is developed. 
The model is based on rigor and explicit statements (viz., description of all correlations 
and parameter value settings), which provides for its greater accuracy to explain 
experimental data. Results of computations reveal qualitatively correct correlations 
between termination probability and amino acid concentration for leader regions with 
predicted attenuation. When applied to random sequences, the model produces correlation 
values varying around a certain constant, which indicates the lack of regulation. 

MODEL 

The approach is based on modeling RNA secondary structure in the regulatory region 
between the ribosome and RNA-polymerase, resonant equations of the RNA-polymerase 
inhibition by helices in this region (equation for F  given bellow), modeling transcription 
and translation initiation and elongation. Microstate is a set of continuous fragments, 
referred to as hypohelices, of any non-continuable helices in the same region. The model 
describes transitions between microstates: decomposition and binding of hypohelices in 
the same region.  

The rate constant of transition between microstates ω and ω' is calculated as follows:  

( )1
( ) exp[ ( ( ) ( )) ( ( ) ( )

2
) ]loop hel loop helK G G G G′ ′ ′ω → ω = κ ⋅ ω + ω − ω + ω . 

Here ( ( ) ( ))loop helR T G G⋅ ⋅ ω + ω  is free energy of RNA secondary structure (loops 
and helices) in microstate ω, R – universal gas constant, T  – absolute temperature (for 
details ref. to Mironov, Lebedev, 1993).  
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Two microstates ω and ω' belong to one macrostate Ω if both ω and ω' are realized by 
identical diagram (for definitions of diagram and its chord ref. to Lyubetsky et al., 2006); 
intuitively it means that both ( )K ′ω → ω  and ( )K ′ω → ω  are relatively large. It was our 
aim to achieve that transitions between two microstates ω and ω' within any macrostate Ω 
are fast, and those between any microstates ω and ω' from different Ω and Ω', 
respectively, are slow.  

Absolute probabilities of transitions between microstates ω and ω' in macrostate Ω are 
inessential in our model. Instead, transitions in the set of all microstates ω in any 
macrostate Ω are required to produce Boltzmann-Gibbs stationary probability 
distribution: 

( )exp ( ( ) ( ))
( )

( )
,loop helG G

p
z

− ω + ω
ω =

Ω
 where 

( )( ) exp ( ) ( ) .loop helz G G
ω∈Ω

Ω = − ω − ω∑  

Trivial averaging over all pairs of microstates ω in Ω and ω' in Ω' produces the 
following equation for the transition rate constant between macrostates Ω and Ω' that 
applies to both increase and decrease of macrostate by one chord: 

( ) ( ) ( ).K p K
′ ′ω∈Ω ω∈Ω

′ ′Ω → Ω = ω ⋅ ω → ω∑ ∑  All other transitions between macrostates are 

null.  
The rate constant of polymerase transition from one nucleotide to the next is 

calculated as ( ) ( )pol Fν Ω = λ − Ω , where Ω is a macrostate, and ( )F Ω  is effective 
decrease of the polymerase rate constant in s-1. In the model, polymerase deceleration by 
hairpin ω  is described as follows: 

2 2
01

( ) exp
( ( ) ) 10

r
F

rL p p
δ

ω = −
ω − +

⎛ ⎞
⋅ ⎜ ⎟

⋅ ⎝ ⎠
, where r is distance between the terminus 

of hairpin and the polymerase. Parameters L1, p0, r0, δ depend on polymerase 
characteristics and value ( )p ω  – on hairpin ω . For a hairpin consisting of the handle and 

the loop, p is estimated from the equation: 
2

tg( ) ,p h
p l

⋅ =
⋅

 0 ,
2

p h
π

< ⋅ <  where h is 

handle length, i.e. the number of its base pairs, and l is loop length. An analogous 
equation is used for an arbitrary hairpin.  

The rate constant of the polymerase sliding within a T-rich region is estimated as 
( ) ( ) / 4Fμ Ω = Ω  (Yin et al., 1999).  

On non-regulatory codons, the rate constant ribλ  of ribosome elongation by 1 

nucleotide is ribλ = 145s− . On regulatory codons, ribλ  depends on concentration c of 

aminoacyl-tRNA according to the Michaelis-Menten law: 
0

( ) rib
rib

c
c

c c
λ

λ =
+

⋅
.  

To model obstacles in ribosome binding, we incorporated ribosome binding rate 

constant 0 0
max

opend
K

d
= λ ⋅ , where opend  is current value of the maximum number of open 

nucleotides in the Shine-Dalgarno sequence (provided that the start codon is open),  

maxd  – the length of the sequence and 0λ  – translation initiation parameter.  
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Standard Monte-Carlo technique is used in modeling. For example, neighborhood of 
given state Ω, centered in Ω, is a set of all states Ω' with non-zero probability of transition 
from Ω to Ω' by both increase and decrease of macrostate Ω. If given neighborhood 
contains n states and corresponding transition rate constants are k1, ..., kn, the next state on 

the trajectory of transitions is determined by realizing random variable .i

i

k
i

k
→

∑
 

The following parameter settings were chosen: 310κ = , 0r  within the range 2–8, 

1 14.5L = , 0 0.167p = , 25δ = , 310κ =  s-1, 0 1c = . “Sizes” of ribosome and 

polymerase are 0 112, 5s s= = .  
The purpose of modeling was estimating function ( )p p c=  of correlation between 

termination probability and concentration c of amino acid or concentration c of 
aminoacyl-tRNA synthetase for operon leader regions in bacteria. These estimated were 
also obtained for random sequences (see below). Function ( )p c  was estimated with 
repeating the modeled process certain number of times (usually 103–104) under given c 
increment, and ( )p c  was calculated as a fraction of times when termination occurred.  

Computer assays were “positive” when all available regions with putative attenuation 
(using evidence e.g. from Vitreschak et al., 2004 ) were analyzed under fixed values of 
the above described parameters. The assays were “negative” under the same parameter 
settings when modeling was done with “random” sequences assembled from the leader 
peptide gene upstream of trpE in Vibrio cholerae, a U-rich terminator from the same 
leader region and a random sequence in four-letter alphabet of random length 
intercalating the two. Positive assays were expected to return approximately monotonous 
growth of function ( )p c , while negative – to demonstrate its absence. All positive 
assays, except for tryptophan biosynthesis operons in Streptomyces spp., returned 
approximately monotonous growth (ref. to Results), and all negative – oscillations around 
different constants.  

RESULTS AND DISCUSSION  

Values in the Table were obtained by computing with our model on leader regions 
upstream of gene trpE in Corynebacterium diphtheriae, Corynebacterium glutamicum, 
Agrobacterium tumefaciens, Bradyrhizobium japonicum, Rhodopseudomonas palustris, 
Rhizobium leguminosarum, Sinorhizobium meliloti, Escherichia coli, Vibrio cholerae, and 
also for gene trpS in Streptomyces avermitilis. The results are in congruence with multiple 
alignments of corresponding leader regions, which are available in publications for 
actinobacteria (Seliverstov et al., 2005) and proteobacteria (Vitreschak et al., 2004).  

For C. glutamicum, termination probability estimated in the model doubles under 
tryptophan concentration growth but still was very low. For some alpha-proteobacteria, 
modeled termination probability increases considerably: 48-fold in R. palustris, 7.6-fold 
in S. meliloti, and 16.6-fold in V. cholerae. The ranges decrease under κ  growth, and in 
this sense their interpretation is unclear.  

Some rows of the Table represent not strictly monotonous pattern. This might be 
accounted for by precision of modeling being below 0.01–0.02, which also depends on 
characteristics of the random seed generator. Classic attenuation is applicable within 
specific intervals of the c value that are determined individually for each gene and 
organism. Small size of such interval measured in the model in 0/c c  does not necessarily 
imply small physical values, e.g. in mM/l. Also, bacteria in favorable natural environment 
do not display strictly monotonous function p(c). The results (presented partially) reveal 
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correlation p(c) congruent on the qualitative level with presence of attenuation in most 
gene leader regions studied. All negative assays (data not shown) returned p(c) values 
oscillating around certain constant. 

Thus, our model can be used to predict the impact of point mutations in regulatory 
regions on attenuation regulation and to predict stability of this system during the course 
of evolution. It can also be incorporated into a broader non-linear model of bacterial 
metabolism with dynamic modeling of gene expression regulation. Another possible 
application of the model is prediction of attenuation regulation by modeling correlation 
between the enzyme activity and amino acid concentration for a single sequence, thus 
eliminating the need to analyze sequence profiles. 

A method is proposed to objectively choose model settings on the basis of source data. 
The computer program offers high flexibility to vary all model parameters and 
correlations. The model was applied to biological data to assess its relative robustness 
against varying parameter settings and to obtain their estimates using Monte-Carlo 
approximations of typical stem lengths, macro- and microstate ratios, lengths of the 
ribosome and polymerase neighboring-state transition cycles, etc. 

Table 1. Termination probability p(c) against concentration c of triptophanyl-tRNA in various bacteria 
Concentration c Species 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
C. diphtheriae 0.34 0.34 0.39 0.46 0.50 0.54 0.53 0.53 0.53 0.52 0.54 
C. glutamicum 0.05 0.06 0.08 0.10 0.10 0.09 0.09 0.09 0.10 0.10 0.10 
S. avermitilis, trpS 0.06 0.13 0.21 0.26 0.28 0.29 0.30 0.30 0.32 0.32 0.30 
A. tumefaciens 0.49 0.50 0.62 0.70 0.74 0.78 0.77 0.78 0.82 0.80 0.79 
B. japonicum 0.19 0.20 0.24 0.26 0.28 0.26 0.26 0.27 0.26 0.26 0.26 
R. leguminosarum 0.23 0.30 0.42 0.55 0.60 0.65 0.67 0.70 0.71 0.71 0.71 
R. palustris 0.01 0.22 0.40 0.48 0.56 0.59 0.60 0.60 0.63 0.61 0.62 
S. meliloti 0.07 0.11 0.23 0.37 0.43 0.49 0.48 0.51 0.50 0.53 0.51 
E. coli 0.34 0.46 0.54 0.68 0.70 0.70 0.71 0.73 0.75 0.75 0.74 
V. cholerae 0.05 0.16 0.39 0.57 0.70 0.74 0.77 0.77 0.80 0.79 0.81 
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SUMMARY 

Motivation: Glucocorticoid receptor (GR) is an important regulator of many genes 
involved in a variety of biochemical and physiological processes. The features of the 
structure and localization of DNA binding sites for GR may be significant for ensuring 
specificity of glucocorticoid-mediated regulation of different genes.  

Results: GR-TRRD database accumulates the largest out of currently published 
samples of nucleotide sequences that are experimentally proved to bind GR 
(glucocorticiod receptor binding sites, GRbss). This sample consists of 152 GRbss from 
77 genes controlled by glucocorticoids. Analysis of the sample has shown that the 
structure of only half of GRbss (53 %) corresponds to traditional viewpoint about 
structural organization of glucocorticoid response element (GRE) as an inverted repeat of 
hexameric half-site sequence TGTTCT  (Aranda, Pascual, 2001). 40 % of GRbss contain 
only hexameric half-site. Notably, there exist experimental evidence about participation 
of most of these GRbss in glucocorticoid regulation. As a result of increasing the number 
of sequences in the sample of GRbss, we have specified the consensus of sites organized 
in a form of inverted repeat (palindromic GREs). Also, possible mechanisms of action of 
hexameric half-sites in glucocorticoid induction have been discussed. 

Availability: (http://wwwmgs.bionet.nsc.ru/mgs/papers /merkulova/gluc/).  

INTRODUCTION 

Glucocorticoid hormones regulate basic vital functions of the organism in vertebrates: 
coordinated growth, differentiation, reproduction, adaptation, and behavior. As a rule, 
glucocorticoid effect in the target cells is produced by binding to a specific intracellular 
receptor (glucocorticoid receptor, GR) that regulates genes via direct interaction with 
specific DNA sequence and/or via protein/protein interactions with the other transcription 
factors (Schoneveld et al., 2004). GR is a member of nuclear hormone receptor 
superfamily. The basis of transcription factor binding sites of this superfamily is produced 
by two hexameric motifs: 1) TGTTCT (GR, mineralocorticoid, androgen, and 
progesterone receptors) and 2) TGACCT (the other receptors). Due to current opinion, 
GR, like the other steroid hormone receptors, interacts with DNA in a form of homodimer 
recognizing the inverted repeat TGTTCT (or TGACCT, in case of the estrogen 
receptor) separated by three base pairs. Thyroid hormone receptors, vitamin D receptors, 
retinoic acid receptors, and numerous orphan receptors (HNF4, COUP, PPAR, CAR, 
PXR, LXR, etc.) are united in a group of proteins, which in a form of homo- or 
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heterodimers interact with direct, inverted, or everted repeats of TGACCT motif with the 
spacer varying from 0 to 9 bp. Several orphan nuclear receptors bind DNA as monomers 
(SF1, LRH1, ROR, and ERR). The single TGACCT motif being the basic element for 
the binding of these receptors is preceded by 5′- flanking AT-rich sequence consisting 
of three-six nucleotide bases (Aranda, Pascual, 2001).  

However, the primary structure of many glucocorticoid receptor binding sites (GRbss) 
from different genes is beyond the frames of the standard model. In particular, there exist 
GRbss participating in glucocorticoid regulation and containing only a single copy of 
TGTTCT hexanucleotide, to which GR binds as a monomer. In addition, the functional 
GRbss organized as direct hexanucleotide repeats have been detected. Also, the cases are 
known when GR forms a heterodimer with the other transcription factors. We aimed to 
elucidate the relative representation of different structural variants in the sample of 152 
GRbss, experimentally found in various genes. The sample was extracted from the section 
GR-TRRD (Glucocorticoid-Regulated Genes TRRD) (Merkulova et al., 1997) of the 
database TRRD (Transcription Regulatory Regions Database) (Kolchanov et al., 2002) 
and contains the overwhelming majority of currently known natural GRbss.  

RESULTS AND DISCUSSION  

Due to common viewpoint, GRbss are organized as inverted repeats of hexanucleotide 
motif TGTTCT with the spacer of 3 bp, i.e., the “palindrome” AGAACAnnnTGTTCT, 
which interacts to GR-homodimer. These sites are considered as the classic glucocorticoid 
response elements (GREs), or DNA regions capable to produce glucocorticoid response 
(Aranda, Pascual, 2001; Schoneveld et al., 2004).  

Based on the GR binding data, we have compiled the set of 152 nucleotide sequences 
of GRbss extracted from regulatory regions of 77 genes controlled by glucocorticoids. For 
most of them (80 %), the data are known about their functioning as GREs. 81 out of 152 
sites from the sample are homologues of the “palindrome”. For these sites, the number of 
discordant positions relative to this sequence does not exceed six, so that each of the 
halves of repeat has at most three discordances. Most sites from this group are 
characterized by very good homology with AGAACAnnnTGTTCT. For 52 of such 
GRbss, the number of discordances is less than three, with at most two discordances at 
each half-site. About 40 % of sites (62) from the sample are not the “palindromes”. Their 
sequences contain only the hexanucleotide TGTTCT (the number of discordances varies 
from 0 to 2), whereas the neighboring 5′ sequence contains at most two coincident 
positions with the left half of the inverted repeat. Neither two sites with two coincident 
positions have simultaneously G nucleotide at position 2 or C nucleotide at position 4, 
which are crucial for binding with GR (Beato et al., 1989).  

Besides, the sample of 152 GRbss contains 3 sites organized in a form of direct repeat 
of hexanucleotide TGTTCT, which binds to GR-MR heterodimer; 4 sites binding GR in 
the region without homology to the hexanucleotide; a single site containing two 
overlapping “palindromes” binding with GR-tetramer; and a single site, where 
“palindrome” overlaps with the hexanucleotide and binds with GR-trimer.  

By increasing the number of sequences in the sample of GRbss and dividing GRbss 
into the structural variants, we have worked out in more details the consensus of 
“palindromic” sites. In Fig. 1a, the frequency matrix and consensus made in 1989 on the 
basis of analysis of 25 GRbss (Beato et al., 1989) are illustrated. In Fig. 1b, the matrix 
and consensus designed by us as a result of analysis 81 sites from GR-TRRD, in which 
both halves of the inverted repeat were found, are presented. Currently, to search for 
potential GRbss, two variants of “palindromic” sequence are used. The Beato consensus 
(Fig. 1a) is used more frequently than the perfect inverted repeat AGAACAnnnTGTTCT. 
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As follows from our results, by increasing the number of sequences in the sample, the 
consensus of GRbss approximates to the perfect inverted repeat. 

 

Figure 1. Frequency matrices and GRbss consensus variants obtained by analysis of 25 (a) and 81 (b) 
experimentally detected sites. The frequency of nucleotide occurrence is given in %. 

An interesting consequence of the analysis of the sample consisting from 152 GRbss 
is the fact that it contains high percentage of hexameric half-sites participating in 
glucocorticoid regulation. By analyzing literary data, 3 general mechanisms of action of 
hexanucleotide GRbss in glucocorticoid induction were supposed. These mechanisms are 
described below. 

1. Functioning of hexameric half-sites as auxiliary elements to the closely located 
“palindromic” GREs. In regulatory gene regions, hexanucleotide sites are often located in 
the neighborhoods of the classic GR binding sites organized as inverted repeats. For some 
of such cases, the presence of hexanucleotide sites is necessary for enhancement (or even 
for realization) of glucocorticoid response. Functional ensembles of hexanucleotide and 
“palindromic” GRbss were found in -2,5 kb enhancer of rat tyrosine aminotransferase 
gene (А000934), promoter regions of human thyrotropin-releasing hormone receptor 
(А02464), human constitutive androstane receptor (A02491), and rat hepatic aryl 
sulfotransferase (A02453) genes.  

The similar combinations were found also in promoter regions of genes encoding 
human elastin (А00026), rat angiotensinogen (А00060), rat bone sialoprotein (А00874), 
rat serine/threonine protein kinase (А00980) and human serine/threonine protein kinase 
(А02156), enhancer gene regions of rabbit uteroglobin (А00001), rat carbamoylphosphate 
synthetase 1 (А00757), LTR of Moloney murine sarcoma virus (А00079). It may be 
supposed that in these genes also, GR-monomers bound to hexanucleotide sites serve as 
accessory binding factors in addition to GR homodimers bound in the neighborhoods.  

2. Interaction (heterodimerization) of GR with the other transcription factors.  
As known, affinity for GR-monomer binding to hexameric half-sites is by an order of 

magnitude lower than affinity for GR-homodimer binding to palindromic sites (Alroy, 

 
 

4 Accession No. in TRRD 
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Freedman, 1992). Hence, on the contrary to “palindromic” sites that are capable to 
produce glucocorticoid induction of reporter genes even in a single copy, the 
hexanucleotide site stays inactive in such constructions. Stabilization of binding between 
GR-monomer and hexanucleotide site may be achieved by formation of the complex 
(heterodimer) with the other transcription factor, which binds to the neighboring binding 
site. The best-studied example of such interaction is heterodimerization of GR-monomer 
with non-related to it protein XGRAF, which binding site closely adjoins the place of 
binding between receptor and hexanucleotide TGTTCC in promoter region of  
γ-fibrinogen subunit gene of the clawed frog (A00734). The similar interaction between 
GR monomer and other proteins takes place in promoter regions of the following genes: 
rat СYP 27 (Ets2; A01395), mouse α-amylase 2 (PTF1; А00871), mouse glucose-6-
phosphotase (FKHR; A00877), in adjacent to promoter regulatory region of the sheep  
β1-adrenergic receptor (Myc/Max; А01873) gene, and rat atrial natriuretic factor gene 
(unknown protein; А00954). 

3. Strengthening of affinity due to formation of GR multimeres in case 
hexanucleotide sites are clustered in regulatory gene regions. Clusters participating in 
glucocorticoid regulation and containing three hexanucleotides located in-between the 
region 41-88 bp have been found in the following genes: human alcohol 
dehydrogenase 2, (А00379), mouse phenylalanine hydroxylase (А00768), γ- fibrinogen 
of clawed frog (A00734), and LTR MMTV (А00045). For one of these clusters, 
namely TGTTCTgatctgagctcttaTGTTCTattttcctaTGTTCT, in position -120/-80 bp of 
LTR MMTV, it was shown that affinity of GR to this sequence is the same as to the 
classic “palindromic” GRE (-191/-167) from the same LTR (Perlmann et al., 1990).  

Thus, analysis of data accumulated in GR-TRRD has revealed large variability of 
GRbss structural variants with different mechanisms of glucocorticoid induction.   
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SUMMARY 

Motivation: A common technique in many areas of bioinformatics is calculating a 
score and comparing this value with a threshold. Usually a training set is used to set the 
threshold or the threshold is selected ad hoc.  

Method: This paper describes a natural approach for threshold selection based on rank 
statistics. Assume a background probability distribution for the considered value and 
consider a set of n  observed scores { }iv  that contains a mixture of biologically 
significant and random values. Sort set of scores by decrease. Using the background 
probability distribution, calculate probability kP  that at least k  out of n  observations 

exceed the observed score kv . Find * min( )kP P=   and let * arg min( )kk P= . We 

suggest setting the threshold score to *kv . *P  is the p-value for the selected set of scores. 
This approach maximizes “non-randomness” of the selected subset of scores. While 
traditional approaches are based on likelihood or confidence probability that are local and 
do not take into account the complete data, our approach is global and is based on the 
analysis of complete dataset. 

Results: Applications of this approach to profile construction is presented. In the 
profile construction problem, the rank statistics technique is applied for selection of 
significant sequences and selection of significant positions.  

Availability: The algorithm for the profile construction is implemented as a WEB 
server (http://www.bioinf.fbb.msu.ru/SignalX.jsp). 

INTRODUCTION 

A common technique in many bioinformatics areas is calculating a value (score) and 
comparing it to a threshold. A typical example is the site search using a profile. In this 
case the score is calculated at each position of the sequence. If the score at some position 
exceeds a given threshold, a candidate site is found (e.g. Mironov et al., 1999). Another 
area is the profile construction. Here two problems arise. One is selection of sequences 
that should be considered, and the other is selection of positions that should form the 
profile. These problems arise in iterative procedures for profile construction, in particular, 
such algorithms as MEME (Bailey, Noble, 2003; Kel et al., 2004) and the Gibbs sampler 
(Thompson et al., 2003; Favorov et al., 2005). This paper describes a natural approach to 
the threshold selection based on rank statistics. Our approach is based on analysis of 
entire data set as it is done in (Benjamini, Hochberg, 1995). We describe the general 
approach and its application to the profile construction. 
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APPLICATION OF RANK STATISTICS FOR THRESHOLD SELECTION 

Let r be a random variable with a known distribution (for example the distribution of 
profile scores on random sequences): ( ) ( )F x P r x= ≤ . Assume that we have 
n observations (for example, calculated profile score in n  positions of a sequence) 
producing n  values { }ir . Fixing a threshold t  one selects tk values. The following 
question arises: “what is better – to select small number of scores with a high threshold t  
or to select many scores with moderate t ?” To answer this question one can calculate the 
probability ( )t tP k  that at least k values from the set { }ir  exceed the given value t  to 

select the threshold t  providing the minimum to the probability ( )t tP k . The motivation 
here is as follow, biologically significant values (e.g. site scores) should be “nonrandom”. 
We select a threshold t  that provides the highest degree of “non-randomness”. The 
obtained minimal value of ( )t tP k can be used as the p-value for the threshold t . 

Clearly it is not necessary to scan all possible threshold values. The best threshold 
necessarily is one of the observed values ir . To minimize ( )t tP k , sort the set of observed 
values by decrease. Then scan the observed values and for every k  consider the threshold 

k kt r=  and calculate the probability ( )
kk tP P k= .  The probability kp  that exactly k  out 

of n  scores exceed kr  is given by the Bernoulli distribution: 

( ) ( )C 1 , 1; .k k
k k n k

k n k k k k kpb p q p P r r F r q p−= = ≥ = − = −   

The probability kP  that at least k  values exceed kr  is obtained by summation of the 
above probabilities: 

C .
n n

i i n i
k i n k k

i k i k
P pb p q −

= =

= =∑ ∑  (1) 

Scanning over all possible values k  produces the minimum for kP  and defines the 
threshold t : 

*min argmin; ;k k kk k
P P k P t r∗ ∗= = =  (2) 

The values defined by formulae (1), (2), Pk, P*, k  are random variables because these 
values are calculated using a set of random variables { }ir . It is well known (Balakrishnan, 

Cohen, 1991) that if { }ir  are instances of the same random variable, then the values Pk  
and k* have the following properties: for every k Pk  is uniformly distributed in the 
interval [0,1]; *k  is uniformly distributed in the interval [1,n]. These distributions do not 
depend on the distribution of the source random variable r . The real objects (e.g. the real 
binding sites) are not random and their scores do not follow the same distribution as the 
source random variable r. Hence if the data set contains real objects, the values Pk,  k*  
will not have the above properties of rank statistics and can be used as indicators that 
allow one to separate the real data with non-random high scores from random noise. The 
traditional approaches based on likelihoods or confidence probability are local and do not 
take into account the complete set of data. On the contrary, our approach is global and 
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involves analysis of the entire dataset. For example, suppose that the dataset { }ir  contains 
15 values, ten of which have the significance Pk = 0.1. In this case the local approach 
provides week significance 0.1 while our approach produces the significance 1.9·10-7. On 
the other hand, if only one observation out of fifteen has significance 0.1 our approach 
will give significance of the dataset 0.79. 

SELECTION OF SIGNIFICANT POSITIONS IN MULTIPLE ALIGNMENT 

Recognition profile constructed based on a multiple alignment should include only 
significant positions; otherwise, the output would be overwhelmed by noise. The 
information content kI  is a natural quality measure for an alignment column k : 

log
k

k
k

f
I f

f
α

α
α α

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . (3) 

Here kfα  is the observed frequency character α in column k, fα is the background 
frequency. The columns with low information content are insignificant, whereas the 
columns with high information content are significant, so the problem is to set the 
threshold for separation of significant and insignificant positions. To apply the rank 
statistic technique for threshold selection one need the background probability distribution 
of the information content. This distribution can be calculated in some simple cases (for 
example if the character probabilities are uniform), but in the general case it is unknown. 
We can avoid this problem if we assume the type of the probability distribution for I . For 
example, we can assume that the distribution for I is normal or exponential. We have 
applied this approach to the threshold selection in the problem of identification of 
specificity determining positions in protein alignments (Kalinina et al., 2004). 

SELECTION OF SEQUENCES FOR PROFILE CONSTRUCTION 

A typical problem of signal identification is as follows. Given a set of sequences that 
presumably contain sites representing a signal, find this signal. The most popular 
algorithms addressing this problem are MEME (Bailey, Noble, 2003; Kel et al., 2004) 
and the Gibbs sampler (Thompson et al., 2003; Favorov et al., 2005). In real biological 
situations there is no guarantee that all sequences contain sites. Methods of comparative 
genomics can provide up to 50 % of sequences that may not contain sites, whereas 
expression arrays often produce even more irrelevant sequences. 

Here we describe application of the rank statistics to select appropriate (site-
containing) sequences in the MEME setting. The algorithm identifies the highest-scoring 
hits of the current profile in each sequence. Then using the selected sites, it reconstructs 
the profile. At that point our technique can be used to retrain only significant sites. We 
use the current profile score as a measure of the site quality. We assume that the profile 
score has the normal distribution (profile score is sum of independent random variables, 
positional nucleotide weights). Hence, the probability that the score exceeds a given value 
can be determined. Using the rank statistics, we can select sites that should be included in 
the profile. The modified MEME algorithm will have the following iterations: 
1. Select site and create a profile. 
2. Iterate:  

a. Find the best hit of the current profile in each sequence. 
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b. Sort sites by score. 
c. Using rank statistics define a threshold and select a subset of significant sites. 
d. Using selected sites, create the new profile. 
e. Using rank statistics select positions that should be included in the profile. 

DISCUSSION 

This approach can be applied to different tasks of bioinformatics, in particular for 
regulation analysis in genomes. This technique allows one to select a non-random subset of 
observations against a background of random observations. This approach is not completely 
free from risks and problems. Firstly, the set of observed values should contain a significant 
number of random events. Otherwise the minimum of the Pk may select a subset with a very 
strong threshold, e.g. the selection may contain only one observation. On the other hand even 
the observations contain only random values from a given distribution, Pk will have a 
minimum at some position. This value is a uniformly distributed random variable. If Pk  are 
independent, the significance of p-value (minimum of Pk) can be evaluated using the extreme 
value distribution: ( ) ( )(p - value ) min 1 1 ( ) .( ) n

kP x P P x F x nx< = < = − − ≅  But the 
random variables Pk  are not independent and thus this is an incorrect estimation. The values 
Pk  are correlated and this is too pessimistic. Thus if we see a p-value considerably less than 
1/n, then we have obtained a significant subset. In applications, a detailed investigation of the 
p-value behavior may lead to interesting observations. A secondary minimum may become 
the main minimum if one changes the scoring scheme or the definition of the background 
probability. On the other hand, deep secondary minima may be biologically reasonable.  
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SUMMARY 

Motivation: We have studied the core promoter regions and also the transcription 
factor binding sites (TFBS) in DNA using the information content of substitution 
matrices. The core promoter region and the transcription factor binding site databases 
have been obtained from the Internet and used without modification. The databases are 
already aligned for direct use. We have determined the substitution matrices of core 
promoter by the direct counting method over a block size of 5, 11 and 15 nucleotides. 
Information content has been directly plotted from these matrices in the form of 
histograms. Similar approaches have been utilized for the transcription factor binding 
sites except that we have used the JASPAR database and have used the DRAGRAM of 
PHYLIP package to show our results as a tree diagram. 

Results: We notice that the information content peaks in around the 11 nucleotide 
region around the TSS. We also note that several of the transcription sites are very 
similar, as determined by the phylogenic studies. The 11 nucleotide range is optimal, as a 
5 nucleotide range may be too frequent (1 in 25) and the 15 nucleotide sequence may be 
too infrequent (1 in 215). It is also possible and very likely that the binding may not be 
sequence dependent but depends only on the local conformation. 

INTRODUCTION 

The recent genome projects revealed that in eukaryotes the coding region is very less 
than expected before. Human genome contains less than 25,000 genes that represent less 
than 2 % of the whole genome. Unlike in most prokaryotic genomes that contain packed 
gene units with few intergenic regions, repeated and non-coding sequences that do not 
code for proteins make up the remaining part of the human genome. Gene expression and 
its regulation involve the binding of many regulatory transcription factors (TFs) to 
specific DNA elements called Transcription Factor Binding Sites (TFBS). Promoter 
region is a regulatory region of the protein-coding genes and shows variation from species 
to species. The transcription factors (cell or tissue specific) bind to the promoter region of 
the DNA that subsequently causes efficient binding of RNA polymerase to initiate mRNA 
synthesis. Specific DNA sequence elements within the promoter region (like TATA-box, 
CCAAT-box, Downstream Promoter Element (DPE) and GC-box) exhibit similarities 
between different promoters of the same DNA as well as between various species. The 
core promoter region (which can extend ~35 bp upstream and which is a minimal 
promoter region required to start the pre-initiation complex formation) usually has 
TATA-box, which is conserved in most of the species (30–50 % of promoters) and TSS 
region, which usually is not conserved. Each nucleotide in the consensus sequence motif 
(TATA box, CCAAT box and GC box) represents the most frequently occurring 
nucleotide at that position and does not represent an actual sequence. Reliable 
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identification of the core promoter region by RNA polymerase II prior to transcription 
initiation is mandatory for the proper initiation and regulation of mRNA synthesis. The 
region 200–300 bp immediately upstream of the core promoter is the proximal promoter 
that has abundant of TFBS. Further upstream is the distal promoter region that usually 
contains enhancers and few TFBS. TFBS are represented by relatively short (5–10 bp) 
nucleotide sequences. Specificity of TF is defined by its interaction with TFBS and it is 
extremely selective, mediated by non-covalent interactions between appropriately 
arranged structural motifs of the TF and exposed surfaces of the DNA bases and 
backbone The ability of the cell to control the expression of genes under different 
developmental and environmental conditions is still poorly understood. Identifying 
functional TFBS is a difficult task because most TFBS are short, degenerate sequences 
occurring frequently in the genome. The non-coding sequences play a crucial role in gene 
regulation hence the computational identification and characterization of these regions is 
very important. 

METHODS 

The counting process needed for the mono and dinucleotide substitution matrices can 
be easily seen from the following diagram: 

 

The principle of counting the frequencies illustrated diagrammatically. The left side 
diagram (a) shows the counting principle for neighbor-independent frequency 
determination. The three lines show the nucleic acid bases corresponding to the TFBS 
already aligned in the database. The solid box is used for determination of the actual 
frequencies and the counts for A2-B2, A2-C2 and B2-C2 are put in a 4 × 4 matrix. Then the 
counting box is shifted by one position (dotted box) and the process is repeated. In the 
right side illustration (b), we indicate the counting principle for neighbor-dependent (pair-
wise) determination of frequencies. In this illustration, we get the actual counts for A2A3-
B2B3, A2A3-C2C3, B2B3-C2C3 and these are placed in a 16 × 16 matrix. The counting box 
is next moved right by one base position (shown by the dotted box) and the process 
continued till the TFBS region is completed. 

The information content of the substitution matrices have been computed using the 

classical formula: 2log ij
ijij ijij ij

i j

q
H q qs

p p
= =∑ ∑ . Where H is the information content, 

qij’s are the observed frequencies and sij’s are the elements of the substitution matrix. For 
the dinucleotide variant of this computation, the ideas remain the same (we shall be 
having four subscripts grouped in two pairs) (Altschul, 1991). 

RESULTS 

We have plotted the information content of the core promoter region for the human 
and mouse genome (Périe et al., 1998) for the three regions indicated in Fig. 1. We notice 
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that near the core promoter region, a blocksize of 5 nucleotides give a strong signal 
whereas for larger blocksizes, the signal drops off rapidly, as expected (Reddy et al., 
2006a). (We have also studied the plant (Shahmuradov et al., 2003) and E. coli 
(Hershberg et al., 2001) promoters but the data is not shown here). 

 

 

Figure 1. The average mutual information content H, (in bits) of core promoter elements (calculated by 
neighbor-independent nucleotide substitutions) from different datasets. In all the figures “a”, “b” and “c” 
represents block size 5,11 and 15 respectively. Each graph has three bars representing TATA-box region, 
TSS region and downstream region. The bars on top of the histograms represent the standard errors of 
the 16 Hij values. 

 

Figure 2. Functional classification of TFBS in mouse; information content is calculated from nucleotide 
for the neighbor-dependent substitution matrices. We have indicated the TF’s by their class names as this 
may help to see the relation between them. 

In Fig. 2 we have plotted the TFBS information content as a tree diagram (using the 
PHYLIP package) for the mouse genome, as obtained from the JASPAR database (Sandelin et 
al., 2004). This information content has been obtained from the neighbor dependent 
computations (i.e., a 16 × 16 substitution matrix has been used). Again we note that a group of 
related binding sites are getting clustered suggesting a common transcription for these 
proteins. These may have a strong functional implication (Reddy et al., 2006b). 
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DISCUSSION  

We know that the core promoter region and the transcription factor binding sites play 
important roles in the transcription process that is prior to the translation step. The 
transcription process is governed by several factors (or proteins) that must initiate the 
production of mRNA from the DNA. Although a lot is known about the translation 
mechanism, relatively less is known about the transcription process, in particular the 
detailed ideas about the factors that cause the initiation of transcription. We note that (i) 
there are several sites that are quite similar so as to bind a given transcription factor and (ii) 
the core promoter region is essentially small and is expected to be around 11 bases in size. 
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SUMMARY 

Motivation: Regulation of transcription has been modeled in a variety of ways in 
cellular and developmental systems.  

Results: Here we apply a method for creating equilibrium models of hierarchical 
statistical systems, the Equilibrium Molecular Complex Composition (EMCC) family of 
models, to the problem of modeling the rate of initiation of transcription in the presence 
of overlapping binding sites, synergistic binding interactions in one dimension, and 
modular activation of a transcription complex. 

INTRODUCTION 

The essential steps for modeling a hierarchical system in equilibrium using the 
Equilibrium Molecular Complex Composition (EMCC) family of models are to (1) 
identify the hierarchical levels; (2) model each level with a partition function Z for a 
Boltzmann distribution, as a function of fugacity parameters z for constituent molecules 
or subcomplexes; (3) perform any possible model reduction (including justifiable 
approximations) on the resulting partition functions Z(z); (4) compose the partition 
functions, substituting partition functions Z from a finer scale for fugacities z at a coarser 
scale.  The validity of this procedure follows from an EMCC “Composition Theorem”.  
We will illustrate this procedure in the case of the Monod Wyman Changeaux model of 
allosteric enzymes, and then apply it to the case of a hierarchical model of transcriptional 
regulation (Mjolsness, 2001) here generalized to the case of transcription factor binding 
sites with optional overlaps with their nearest neighbors in one dimension, and optional 
interaction energies with their second nearest neighbors, and hierarchical activation in 
terms of transcriptional regulatory modules. 

Assume we have a molecular complex defined at each level by a set of binary 
occupancy variables ∈{0,1}is , related through a high-order Ising model. For each slot 

there is a fugacity variable iz . We can define a multidimensional array J of interaction 
energies, whose elements are indexed by the ordered set of indices ( )ρ σ : 

< <= ∈( ) ( (1) (2) ... ( ))i i i lJ Jρ σ  
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with the convention that any other values of J are 0. Defining =00 1, the partition 
function for equilibrium statistical mechanics is 

σ σ∈ ∈

σ
= −β∑ ∏ ∏ ∏( )

{ | {0,1}} { | {0,1}}
( | ) ( ) exp[ ( ) ]ji

j
s s ii i j

sZ z J z J si ρ σ  (1) 

Considered as a function of the fugacities z, Z(z) is a high-order polynomial and it is a 
generating function for the (unnormalized) probabilities of all configurations s. However, 
many J’s can tend towards ∞ in such a way as to prohibit particular combinations of 
values of si by giving them zero probability. Also many J’s can be exactly zero, so that 
particular interactions are absent.  These possibilities can be encoded by the predicates 
P(s) and Q(σ), respectively, in the following expression for the partition function: 

σ σ

σ σ σ

σ

∧ ∧ ⇒

= −β∑ ∏ ∏

≡ ω∑ ∏ ∏

∏
{ | ( )} { | ( )}

( )
{ | ( )} { | ( ) ( ( ))}

( )( | ) ( ) exp[ ( ) ]

( ) ( )            

jis
i j

s P s i jQ

si
i

s P s i Q si i i

Z z J z J s

z ρ σ

ρ σ

 (2) 

As a trivial example, a heterodimer of species 1 and 2 with no internal states would 
have Z(z1, z2) = ω1,2z1 z2. A protein with a single binding site that can be empty or 
occupied by species 1 or 2 would have Z(z1, z2) = 1+ω1z1+ω2z2. If the protein is itself 
regarded as one of the species that can be present or absent, with fugacity z0, then it must 
be present and the partition function is Z(z1, z2) = z0(1+ω1z1+ω2z2). In each case, as for 
any probability generating function, the coefficients can be normalized to give the 
probabilities of each possible configuration of bindings. 

Such partition functions can be put into a form with homogeneous degree by 
introducing the complementary fugacity variables zi = zi

+zi
-: 

+ − + − −ω = ω ∏homog homog( , | ) ( / | )( ).iZ z z Z z z zi  No information is lost since 
+ −ω = = = ωhomog homog( | ) ( , 1 | )Z z Z z z z . 

METHODS AND ALGORITHMS  

Composition Theorem. Suppose we have a two-level hierarchical system, with a top 
level (coarse-scale) partition function Z0 and a set of lower-level (finer-scale) partition 
functions. Given partition top-level internal state variables {s0} that can interact with 
lower-level systems, and lower-level activation variables pi that can interact with higher-
level systems, we can define lower-level partition functions ω0([ ], ) ( , )j is p

iZ z . Without the 
indices s0 and pi, generating functions for discrete-time branching processes (birth-and-
death processes) are obtained by function composition from the generating functions at 
each succeeding generation, with the first generation as the outermost composition 
(Athreyea, Ney, 1972). A similar result holds in the present situation. 

A “Composition Theorem” gives conditions under which partition functions Z0(z) at 
the top level and ≥{ ( ) | 1}iZ iiz at the next lower level in a scale hierarchy, all of which 
are in the form of  (Equation 2), may be composed to give the partition function 

− ζ ≥2 level ([ ( ) | 1])i i iZ Z iz , also in the form of  (Equation 2), for the composite molecular 

complex. Optionally some of the ζi  may be set to 1 if we do not need to differentiate 
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with respect to them. For example, if = 2

1( ) ( )i i iZ zz  then there is a model level 
corresponding to obligatory homodimerization in binding to the top-level complex at 
position i.  Likewise if = + ω + ω1 1 2 2( ) (1 ),i i i iZ z zz  then there is a binding site which can 
be empty, or occupied by just one of two competing factors.  The composition theorem 
may be used recursively to model many levels of complex composition. 

IMPLEMENTATION AND RESULTS 

MWC Example. A simple example is given by the Monod-Wyman-Changeaux model 
of allosteric enzymes. 

Level 1 (top): global activation/inactivation: + −= ζ ω +1 2 2
0iZ Z Z . 

Level 2: Independent identical subunits: ± ±=2 3( )nZ Z . 
Note: levels 1 and 2 are ordinarily combined.  
Level 3: Independent binding heterogeneous sites within each subunit: 

±
α= α

± = ∏ 4
1

3 ( )A nZ Z . The simplest case is α ∈{1, 2, 3} for substrate/product, activator, and 
inhibitor respectively. 

Level 4: Mutual exclusion (MutEx) for occupation: α α
± ±

= α α
± ±= ω + ω∑ 5

1
4 n

i i iZ Z . 

Without loss of generality, take α
±ω =1 since empty binding sites are never prohibited. 

Level 5: Convergence through sharing of fugacity variables, each of which is (for a 
dilute well-stirred solution in a fixed macroscopic volume) proportional to the number of 
molecules present and therefore to concentration: α

± =5
iZ z .  

Composition of all levels: + −
= =α= α=α α= ω + ω + + ω∑ ∑∏ ∏1 11 10 0 (1 ) (1 ) .n nA An n

i ii i i iZ z z z  

The original MWC model has α
±ω = 0i  unless I = α and the following condition: 

= + ∧ α = ∨ α = ∨ = − ∧ α = ∨ α =( 1 ( 1 2)) ( 1 ( 1 3))s s  where α = (1, 2, 3) for substrate, 
activator, and inhibitor respectively.  In that case we recover the original MWC model: 

= =

= =

= + +∑ ∑

+ + +∑ ∑

1 1

1 1

(1 ( / )) (1 ( / ))

           (1 ( / )) (1 ( / ))

n nn n
i iS A

n nn n
i iS I

Z L c S K A K

c S K I K
 (3) 

Clearly this model can be generalized to multiple substrates, activators and inhibitors 
on each subunit, as demonstrated and applied in (Tarek et al., 2006) to amino acid 
synthesis pathways. 

EMCC application to transcriptional regulation. With this apparatus we can rederive 
and extend a model similar to Hierarchical Cooperative Activation (Mjolsness, 2001) for 
transcriptional regulation. Transcription factors bind, alone or in multimers such as 
homodimers or heterodimers, to DNA binding sites that can overlap with their one-
dimensional neighbors (in which case they can’t be occupied simultaneously) or be 
sufficient close to their nearest nonoverlapping neighboring sites in one dimension that 
energetic interactions occur. These possibilities are summarized by allowing overlap with 
nearest neighbors to either side, interaction with next nearest neighbors to either side, and 
missing sites that break chains of overlap and/or interaction. At a coarser level, activation 
occurs in modules or cassettes (such as the Drosophila even-skipped minimal stripe three 
element) which contribute to overall activation of transcriptional initiation. Within these 
limitations, we can formulate an equilibrium complex model similar to MWC at several 
levels. The novel part of this model compared to HCA is the one-dimensional interactions 
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through site overlap and synergy: second nearest neighbors (odd or even) interact 
energetically with factor ω. Therefore each successive pair of sites has three possible 
states. The model can be solved using 3 × 3 transfer matrices on site pairs: 

+ + − +
=

+ + + +

= ⋅ ⋅∏

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ω⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ω ⎝ ⎠⎝ ⎠

2 1 2 1 2 1,2 1 1
1

2 2 2 2 2 2 2 ,2 2 2

1 1 1 1
(1,1,1) { 0 }i i i i

i k

i i i i i

Z z
z

z z
z z z

 

Any site can be omitted (removing its overlap constraints and interaction energies) by 
setting its zi to be 1 and ωi*= ω*I =1. 
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SUMMARY 

Motivation: A genome alignment is an important instrument of post-genomic 
computational biology. The commonly available tools (LAGAN, BLAT, YASS, etc) 
designed for command line mode and thus tend to loose some similarities without any 
possibility for user to learn about this. In contrast, the OWEN is an interactive tool, 
allowing user to control the alignment process and to be sure that no interesting events 
were lost. However, one may need tools to store some alignment protocols that are 
suitable for a class of similar situations and then implement the protocol automatically. 

Results: We propose OWEN-SCRIPT, an extension of the OWEN program thet 
al.lows to perform OWEN based scripts. The commands of the scripts correspond to the 
actions of interactive OWEN. Examples of protocols obtained from alignment human and 
mouse genomes are also available. 

Availability: Program OWEN-SCRIPT is available on request from the authors. 

INTRODUCTION  

OWEN, named after a scientist who developed the concept of homology (Owen, 
1848) is a software tool for aligning pairs of long sequences based on greedy paradigm 
(Roytberg et al., 2002). Unlike other popular tools (e.g. LAGAN (Brudno et al., 2003), 
YASS (Noe, Kucherov, 2005), etc.)  OWEN is an interactive tool and allows human 
intervention at every step of the alignment process. This makes the user sure that (s)he did 
not miss any  essential similarity. Constructing a detailed alignment usually takes 5–15 
iterative steps; each of steps consists of constructing and editing local similarities and 
with resolving conflicts between them.  

However an alignment protocols invented during the interactive work can be adequate 
for a series similar cases. Because of this we have implemented in the OWEN a script 
option. The script commands are in almost one-to-one correspondence with the interactive 
actions and thus any alignment protocol can be represented with a proper script; the script 
then can be used to align automatically proper genome pairs.  
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METHODS AND ALGORITHMS  

OWEN actions: an overview. OWEN session starts with the determination of input 
data. During the session OWEN stores a set of local alignments. All alignments can be 
divided in two classes: those that are in conflict with some other alignments, and the non-
conflicting ones, i.e. those are collinear to any other alignment (two alignments are 
collinear if segments involved in one of them precede in both sequences segments 
involved in the other, and are in conflict otherwise). The aligning with OWEN consists 
mainly of creating, editing, and deleting local alignments; the corresponding actions are 
listed under CONSTRUCT, CONFLICT and FILTER items of the main menu. 

Actions listed under CONSTRUCT create new and modify the already present 
alignments, e.g. Align creates new alignments in areas defined by the present alignments 
(so that the new alignment cannot be in conflict with any of the present ones); Expand 
extends existing alignments. Actions listed under CONFLICT resolve conflicts between 
alignments by trimming conflicting alignments (Reconcile) or by completely deleting 
some of them (Greedy, Optimal, and Kill). Actions listed under FILTER can create, 
update, and delete the filter. A filter is a list of segments in both sequences that (i) are 
annotated as repeats, and/or (ii) are aligned with several segments in the other sequence, 
and/or (iii) have low complexity. Segments included in the filter can be masked when 
actions Align and Expand are performed.  

The ultimate goal of a session is to construct the best (from the user’s point of view) 
chain of non-conflicting alignments, then to fill the gaps between them by the algorithm 
of global sequence alignment and thus to obtain the global alignment of the given 
sequences. However, the user can produce and save different global alignment and/or 
save intermediate sets of local alignments that possibly contain conflicts. 

IMPLEMENTATION 

OWEN command file. The OWEN command file is a text file, each it’s line is an 
operator, describing an action of OWEN and parameters of the action. For example, 
sequence1 chr6_hum.seq 1–1000000 causes an input of first million of nucleotides from a 
file chr6_hum.seq as the first sequence of the pair to be aligned. The operator align  
p = 0.000001 w = 16 5/8 = 12 nomask leads to generation of all local similarities, which 
have P-value below p = 0.000001, and are detectable with given parameters of the 
algorithm, e.g. they should contain at least 16 consecutive matches. The sequences to be 
analyzed should be prepared by preceding operators.  All OWEN actions can be 
represented with proper operators. The complete list of operators (commands) and 
corresponding actions is given in the Manual, available at ftp://ftp.ncbi.nih.gov/ 
pub/kondrashov/owen. The web site also contains templates of command files; using the 
templates one can create command files adjusted to a typical biological problems. 
Protocols of genome alignments and their script representations are  also discussed in 
(Ogurtsov, 2005). 

The operators of OWEN-SCRIPT command file are performed one by one, condition 
operators are not allowed. We have declined implementation of BASIC-like command 
language, because the developed tool was sufficient to solve all problems arisen in our work.  

The general form of the OWEN command file is given on Fig. 1. 
The command file owen.cmd can be executed with the command>owen owen.cmd 

Scripts based on OWEN command files.  
A simple, but important way to extend abilities to describe alignment tasks is to 

utilize UNIX scripts, MS WINDOWS batch files, or analogous resources of other 
operating systems. This is the way, for example, to prepare a task to align a large set of 
sequence pairs.  
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Figure 1. General form of the OWEN command file. The file determines alignment of the sequences 
from files HUMAN.seq and MOUSE.seq; the latter should be invert-complemented. Results will be 
stored in the file Hum_Mus.gal. 

Indeed, having an OWEN command file (see Fig. 1), describing an alignment protocol, 
one can easily create a UNIX script (see Fig. 2) that provides an alignment of given sequence 
according the protocol.  To obtain the script one needs (1) add “echo” at the beginning of each 
line of the command file; (2) add “>> owencmd.tmp” at the end of each line or “> 
owencmd.tmp” at the end of the 1st line; (3) add two lines at the bottom of the file: 

owen owencmd.tmp 
delete owencmd.tmp    
The obtained script will create a file owencmd.tmp, which is a copy of an initial 

command file, then run OWEN with the command file and delete command file. By 
substitution of any parameter of the script with “$1”, “$2”, etc. one can obtain a 
parameterized script (see Fig. 2).  

 

Figure 2. UNIX script obtained from the command file given on Fig. 1. The names of input and output 
files are described as parameters of the script.  

For example, suppose, that the file Align-1.sh  contains a copy of the script from  
Fig. 2. Then for any files seq_A.txt and seq_B.txt the script Align-1.sh seq_A.txt 
seq_B.txt Result_AB will provide the alignment of the sequences from the files according 
the protocol of Fig. 1 and output results to the file Result_AB. The script Align-1.sh, in 
turn, can be called from another script, etc. Examples of scripts can be found at 
ftp://ftp.ncbi.nih.gov/pub/kondrashov/owen. 

Basic tools, environment and architecture. The OWEN-SCRIPT’s source is portable. 
It is written on ANSI C++, the total volume is ~ 10 000 lines. Graphic interface is based 
on the Fox-toolkit (see http://www.fox-toolkit.org/). All libraries are linked as static, this 
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guaranties that executable module can be downloaded and run per ce on user’s computer 
with the same processor type. 

OWEN’s architecture can be represented as a finite automaton. Receiving an input 
signal (user’s click in interactive mode or command line in a batch mode), it performs a 
corresponding action. The list of actions is given in the Manual. The data structures are 
mainly same as in previous version of OWEN (Ogurtsov et al., 2002).  The main data type 
is a box, i.e. a pair of fragment U[a1, a2] and V[b1, b2] of given sequences U and V. For 
each box we remember a non-conflicting chain of local similarities (“backbone chain”, see 
(Roytberg et al., 2002)), its score and some other values. The boxes are arranged in 3 trees, 
which support quick search by both coordinates of a block and its score. 

CONCLUSION 

OWEN-SCRIPT is a powerful tool and have been used in many works (see e.g. 
(Bazykin et al., 2004; Ogurtsov et al., 2004; Shabalina et al., 2004). The main advantage 
of the tool is its ability to fit the specificity of the data and then reproduce the obtained 
procedure of analysis. 
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SUMMARY 

Motivation: Insufficient reliability of expression measurements is key problem facing 
microarray experiments. The problem could originate from poor gene identification by the 
probe sequences, whose design may not consider the actual complexity of the human genome.  

Results: We re-estimated genome localization of the Affymetrix U133A and U133B 
GeneChip (initial) target sequences. We matched these sequences to gene and transcripts 
in the human genome. This resulted in the significant redefinition of specificity and 
uniqueness of more than 2500 GeneChip probesets. Among the rest target sequences, 
approximately one quarter overlapped with interspersed repeats that could cause cross-
hybridization signals and errors in expression measurements. To test that hypothesis, we 
compared GeneChip microarray data from large groups of breast cancer patients differed 
by aggressiveness of tumor growth. In particular, for low- and high- aggressive tumors, 
we demonstrated that among the set of differentially expressed genes the probesets with 
of repeat-overlapped target sequences statistically significant underrepresented in 
compare to the probesets of repeat-free target sequences. In addition, 407 Affymetrix 
target sequences were incorrectly oriented relative to the genes they purportedly 
represented (anti-sense transcripts). Surprisingly, a large fraction of these “erroneous” 
sequences can be significantly associated with important regulatory biological processes, 
molecular functions and pathways. The all defined categories of probe sequences have 
been annotated in our local Affy Probes Mapping and Annotation (APMA) database. Our 
results allow us to re-identify many targets used in a microarray experiment and carry out 
biological classification of the anti-sense transcripts. 

INTRODUCTION 

Affymetrix GeneChip technology provides in situ synthesized oligonucleotide arrays 
with known sequence produced on each spot. GeneChip array uses a set (called probeset) 
of 11–20 oligonucleotide probes, each 25 bases long, to represent a gene. The expression 
level for a gene transcript is a sum of hybridization signals from the entire probeset. The 
perfect match probe comes together with a mismatch probe designed to measure specific 
hybridization signals (Affymetrix, 2004, http://www.affymetrix.com/support/). However, 
inadequate probe design and incorrect gene annotation has a clear potential to generate 
downstream problems for correct interpretation of microarray experiments. Recent papers 
(Mecham et al., 2004; Harbig et al., 2005) have re-evaluated of Affymetrix array probes 
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quality using BLAST alignment of probe sequences to the “complete” human genome. In 
this work, we combine sequence analysis of Affymetrix U133 original (target) sequences 
with clinical and biological validation of different categories of the target sequences. This 
approach allows us to re-evaluate the quality of many hundreds of Affymetrix target 
sequences and to obtain new knowledge on gene expression. 

METHODS 

Affymetrix sequence data for the U133A and U133B chips were downloaded from the 
NetAffx web site. These sequences, intended to represent genes, are referred to as 
“targets” of the Affymetrix probesets. We used these targets for the initial survey of 
possible transcripts that each probeset might detect. For validating accuracy of target 
sequences assignment, we used BLAT program, UCSC Genome Browser tools, and our 
additional programs developed at GIS and at BII. BLAT uses 90 %-complementarity 
criterion to match the target sequence for any genic region(s) of RefSeq, mRNA and 
splice variants on the HG17 assembly. These results were stored in a local database 
(APMA data base) associated with the probeset ID number from the chip. We also carried 
out manual curation and annotation of more than 2500 probesets representing the target 
sequences which were selected and classified by our in-house programs as problematic 
sequences. The Affymetrix target sequence is considered as a problematic sequence if it: 
(1) does not align by BLAT at 90 % complementary criterion in the human genome; (2) 
shows more than one match on the human genome; (3) shows an opposite orientation to 
genic sequence (anti-sense transcript), or to mRNA or most of ESTs in the EST cluster 
corresponding to the intended target. 

In addition to this basic alignment and verification, we evaluated other potential 
complicating factors. For each sequence target we carried out a search for repetitive 
elements (using RepeatMasker) constructing table of repeats found by family and repeat 
types (DNA, LTR, LINE, SINE, simple and low complexity repeats, etc.). We calculated 
repeat coverage by percentage of the Affymetrix target sequence length. Split or 
chimerical probesets also were identified and flagged.  

To validate usefulness of the problematic probes, we used statistical analysis of U133 
Affymetrix microarrays on breast cancer tissue samples obtained from 260 primary breast 
cancer patients and stored in the database at GIS (Miller et al., 2005). 

We used SAM (Statistical Analysis of Microarrays) software (Tusher et al., 2001) to 
estimate significance of differences in probesets expression level in biologically and 
clinically different groups of tumors (e.g. histological grade 1 and grade 3 breast cancers). 
For each of the Affy probesets “false positive rate” (q-value) was calculated by SAM 
program. We used Panther (http://www.pantherdb.org/) and DAVID (Dennis et al., 2003) 
Gene Ontology (GO) statistical software to estimate a significance of enrichment of 
specific gene categories in the groups of probesets studied.  

RESULTS AND DISCUSSION 

We revised the localization of Affy U133 sequences on the human genome. We found 
that: (1) 187 (0.42 %) probesets don't match any location in the human genome (internally 
called Tag0, see Table 1); (2) 42134 (94.3 %) probesets have unique genome location 
(reliable probesets, Tag1); (3) 2371 probesets (5.3 %) have multiple locations in the 
human genome, up to 10 times and more (Tag2, ...Tag11, etc.) and might cause potential 
cross-hybridization.  

We believe that mismatched sequences (Tag0) and the sequences with multiple 
genome hits (called Tag2, Tag3, ... Tag11) are a source of uncertainties and cross-
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hybridization affects in gene identification and should be excluded from analysis  
of array experiments. 

Table 1.  

# locations Tag0 Tag1 Tag2 Tag3 Tag4 Tag5 Tag6 Tag7 Tag8 Tag9 Tag10 >= 11 

#probesets 187 42134 1774 274 111 73 27 25 23 15 7 42 

% 0.42 94.28 3.97 0.61 0.25 0.16 0.06 0.06 0.05 0.03 0.016 0.094 

 
A novel and important feature of our analysis is a study of the repeat coverage of the 

transcripts represented by the target sequence. About 25 % of target sequences in Tag1 set 
are covered by mobile elements (repeats) abundant in the genome; hence, they might be a 
source of erroneous detection of expressed genes. Negative effect of repeats on gene 
expression level could be shown statistically on a large representative set of Affymetrix 
microarrays. We used an industry-standard GeneChip dataset of human breast cancer 
samples (Miller et al., 2005; database ID: NCBI GEO GSE3494).  

Using a standard program to estimate of false positive rate, we selected a large number 
(~4000) of differentially expressed genes. We assume that if a given type of repeat 
elements covers a given target sequence, then corresponding probesets should be under-
represented in a set of discriminating genes. We used a discrimination score which was 
estimated by a ratio of the numbers of differentially expressed genes (probesets) in the 
repeat-overlapped and the repeat-free sets. First, using SAM 2.1 program, we selected a 
list of differentially expressed probesets which can discriminate the low- and high- 
aggressive breast cancers at low “false positive rate” (q-value) of errors equals 1.5 %. 
Then, we counted the number of probesets with target sequence covered by a given type 
of repeats at 10 %, 20 %, . . . , 100 %. We found that as a general rule, and as expected, 
target sequences with repeats have progressively worsening significance for longer 
repeats (LTR and LINE) and for larger overlapping. Such proportion presents quality of 
probesets (Fig. 1). 

Importantly, a quality level of an individual target sequences covered by repeats was 
typically reproduced across the clinical cohorts representing the patients from different 
hospitals and different countries (data not presented).  

Additionally, we found that 407 Affymetrix probesets were designed using wrongly 
oriented sequences regarding to intended target gene (anti-sense transcripts). These 
probesets may have been designed based on poorly defined RNA sequences in which 
orientation was not defined accurately (e.g. EST clusters, pseudogene transcripts) and 
gene name had been assigned later; however, some may have originated from reverse-
oriented artifact singleton cDNA clones whose incorrect orientation is evident when their 
directional genome alignments are compared to those of newer and more accurate cDNA 
sequences mapping to the same locus. Large fraction of ESTs/transcripts assigned to these 
sequences show low expression level.  

Surprisingly however, many of “the wrongly oriented” probesets may not be useless. 
First, based on gene ontology (GO) Panther software tool, these sequences exhibited 
statistically significant enrichment by specific biological categories, relevant to cancer and 
signal transduction (Biological process: protein phosphorylation, protein modification, 
signal transduction, NF-kappaB cascade, cholesterol metabolism, MAPKKK cascade, 
oncogenesis, protein metabolism and modification. Molecular Function: Protein kinase, 
guanyl-nucleotide exchange factor, transcription cofactor, non-receptor serine/threonine 
protein kinase, G-protein modulator, protein kinase receptor, select regulatory molecule, 
tyrosine protein kinase receptor, nuclease). 
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Figure 1. Estimations of the probability of occurrence of discriminating probesets (at q < 1.5 %) as a 
function of percent of target sequence span covered by repeat. 

Second, using SAM program, we found that in comparison of 70 breast cancer samples 
classified as histological grade I tumor (low aggressive sub-type of breast cancer) versus 55 
breast cancer samples classified as histological grade III tumor (high-aggressive sub-type of 
breast cancer), 58 probesets exhibit high confidence. 28 probesets were up-regulated in 
grade III tumors, and 30 probesets were up-regulated in grade I tumors (SAM q-value < 
0.1). Statistical GO analysis of that confidence set of differentially expressed genes reveals 
enrichments of several biological categories associated with cancer. (Protein amino acid 
phosphorylation, cell cycle, mitosis, m-phases, nucleotide binding, protein kinase activity). 
These results suggest that a significant fraction of the wrongly oriented probesets detect real 
and tightly regulated transcripts. However, biological role of such transcripts from opposite 
strand at the same locus of a known gene has not been studied systematically.  

Our results demonstrate that integration of statistical analysis of clinical data and 
genome-scale computational search of specific and reliable target sequences allows us to 
increase discovery potential of microarray data. 
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SUMMARY 

Motivation: MicroRNAs (miRNAs) are short recently discovered non-protein-coding 
RNAs, which regulate gene expression.  

Results: Using the system ACTIVITY to study the microarray data on the content of 
mature miRNA in A. thaliana, we found that a high content of miRNA correlates with a high 
occurrence of the tetranucleotides WRHW and DRYD in this miRNA sequence. It is shown 
that the linear regression of the unknown quantitative content of arbitrary miRNA on the 
basis of the known occurrences of the WRHW and DRYD within its sequence gives 
statistically significant predictions with independent control data. Till now functionally 
important context feature of mature miRNAs are unknown and here we first report that 
the sequence of mature miRNAs may also influence their ability to accumulate in tissues. 

INTRODUCTION  

MiRNAs are endogenous RNA with a length of 20–24 bases that bind in a 
complementary manner to messenger RNA (mRNA), which results in translation 
inhibition or destruction of the mRNA (Bartel et al., 2004). MiRNAs have different 
abundance and tissue specificity. A high content of miRNAs may be determined by both a 
high transcription level of their genes and a low rate of miRNA degradation. The findings 
in the present study suggest that the miRNA content in A. thaliana organs correlates with 
the occurrences of WRHW and DRYD tetranucleotides in the miRNA sequence.  

METHODS AND ALGORITHMS 

In the miRNA fragments (Table 1) with a length of 20 nt from the 5′-end  
(E = e1...ei…eL=20, where nucleotide ei∈{A, U, G, C}) we study using the system 
ACTIVITY (Ponomarenko et al., 1999) the occurrence of oligonucleotides Z(m) = z1...zm 
with a fixed length m ranging from 1 to 4 nt and weighted it taking into account their 
localization with the start at position i of this sequence: 

XZ(m),F(E)=Σi=1,L-m+1 F(i) Пj=1,m Δ(ei+j-1∈zj), (1) 



Computational structural and functional genomics and transcriptomics 131
 

where, zj ∈ {A, U, G, C, W = {A,U}, R = {A,G}, M = {A,C}, K = {U,G}, Y = {U,C},  
S = {G,C}, B = {U,G,C}, V = {A,G,C}, H = {A,U,C}, D = {A,U,G}, N={A,U,G,C}}; 
Δ(true) = 1, Δ(false) = 0; and F(i) is the weight function modeling the effect of Z(m) with a 
start at position i of the sequence E on the miRNA content using the heuristic rule “the higher 
is F(i), the stronger is the influence of Z(m) at position i on the miRNA content. Overall, we 
analyzed 360 weight functions F(i) of two types (Fig. 1): 180 U-shaped F(i) with one peak 
(maximum or minimum) and 180 S-shaped F(i) with one transition (increase or decrease). 
Since till now, these functionally important context feature of mature miRNAs are 
unknown we made attempt to find these characteristics within miRNA sequences using  
U-shaped functions and gradients of these specific characteristics along miRNA sequences 
using S-shaped functions. 

Table 1. Content of miRNAs in A. thaliana  
miRNA I II III IV V VI VII VIII WRHW DRYD Eq.(5) 

mir158 3.590 3.889 4.016 5.722 4.288 5.851 6.612 4.853 1.790 2.013 5.780 
mir159 4.657 5.237 4.179 5.788 5.076 6.003 5.528 5.210 1.300 1.399 4.329 
mir160 3.469 3.252 2.085 4.146 3.363 4.678 5.699 3.813 0.685 2.434 4.881 
mir161.1 4.373 4.331 3.655 4.756 4.703 5.133 5.795 4.678 1.224 1.873 4.852 
mir161.2 2.999 3.517 2.427 4.531 3.794 4.392 5.637 3.900 1.779 1.634 5.267 
mir163 0.722 1.687 0.739 4.642 2.560 1.308 2.049 1.958 0.608 1.700 3.815 
mir164 3.668 4.166 4.270 4.520 4.187 4.366 4.467 4.235 1.644 1.460 4.861 
mir165 0.658 0.722 0.622 1.126 0.717 0.998 1.441 0.898 0.000 0.700 1.702 
mir166 1.494 1.353 1.224 1.728 1.380 1.522 1.668 1.481 0.000 0.700 1.702 
mir167 4.929 2.132 5.663 5.639 6.275 5.921 4.134 4.956 2.226 1.172 5.248 
mir168 3.479 3.532 3.158 4.349 4.985 4.508 4.151 4.023 1.000 1.249 3.738 
mir170 1.458 1.139 1.153 1.551 1.652 1.926 -0.275 1.229 0.476 1.170 2.945 
mir172 6.257 7.769 5.019 7.774 6.215 3.966 6.060 6.151 2.698 2.598 7.742 
mir173 0.786 0.795 -

0.232 
0.945 1.086 1.320 0.830 0.790 1.610 0.549 3.619 

mir390 3.452 2.473 0.982 2.888 3.557 2.718 2.489 2.651 0.434 2.128 4.149 
mir394 2.186 3.014 1.505 2.174 1.204 2.534 1.400 2.003 0.000 0.247 1.107 
mir396 3.184 4.805 2.856 5.048 5.753 4.266 4.167 4.297 1.262 0.549 3.162 
mir156 1.182  2.343 3.230 1.959 6.517 3.277 3.085 0.974 2.081 4.797 
mir169 0.108 1.548  2.272 2.367 3.206 3.159 2.110 0.000 1.611 2.899 
mir171 3.215 0.780 2.379 1.551 1.594 2.580  2.017 0.476 1.170 2.945 
mir398 0.115 0.640 1.710 3.201 3.522  1.228 1.736 0.568 0.347 1.985 
mir156/157   –

0.094 
1.353 1.569 3.767 0.299  1.890 1.021 4.608 

mir162 0.116   0.644 0.055    1.485 1.205 4.317 
mir391    1.517 0.832    0.922 1.910 4.504 
mir319 0.754 1.254       1.436 1.311 4.392 
mir397b  -

0.543 
 0.940 0.216  1.509  1.000 1.249 3.738 

R 0.624 0.637 0.590 0.626 0.516 0.628 0.686 0.798 0.834 
α 0.0025 0.0025 0.005 0.001 0.01 0.0025 0.0005 0.000025 

Fig.2a Fig.2b 

0.05 

Notes: Columns I–VIII: logarithmic units averaging according to Axtel and Bartel, 2005 and these data 
analysis provided by our approach. I, inflorescence; II, stem; III, silique; IV, cauline leaf; V, rosette leaf; 
VI, seedling; VII, root; VIII, averaged; R and α – linear correlation coefficient and its significance. 

 
It is commonly known that statistical validation of the inference “the occurrence rate 

of XZ(m),F(E) correlates with the content of [miRNA]” requires that all the pairs of 
variables {XZ(m),F(Ek), [miRNA]k} meet the condition of below simple regression: 

[miRNA]Z(m),F(Ek) = a + b * XZ(m),F(Ek), (2) 
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where, a and b are simple regression coefficients calculated conventionally according 
to the tested set of pairs of real numbers {XZ(m),F(Ek), [miRNA]k}. 

Eq. (2) utilizes the miRNA sequence Ek to predict the quantitative values 
[miRNA]Z(m),F(Ek) indicating the content of this miRNA in A. thaliana based on the 
occurrence of Z(m) oligonucleotides in this miRNA. Regression (2) is applicable 
provided that there is a significant correlation between the predicted and experimental 
values—[miRNAZ(m),F(Ek) and [miRNA]k. To test this, ACTIVITY first forms seven 
subsets of such pairs from all the analyzed pairs {XZ(m),F(Ek), [miRNA]k}. Then for 
each of these 7 subsets, ACTIVITY tests 11 correlations between the prediction and the 
experiment. In particular, these 11 correlations include linear, sign, and rank 
correlations. Thus, ACTIVITY tests overall 7*11 = 77 partial correlations between the 
predicted and experimental values—[miRNAZ(m),F(Ek) and [miRNA]k. Testing of each 
nth partial correlation (1≤n≤77) consists in estimation of its significance αn, which then 
is converted in terms of Zadeh’s fuzzy logic (Zadeh, 1965) into validity estimate for the 
prediction tested: 

1, if αn  ≤ 0.01; 
1.3 - 28.3αn + 55.6αn

2, if 0.1 ≥ αn ≥ 0.01; 
 

qn(XZ(m),F(E)      [miRNA])= { -1, if αn ≥ 0.1. 
 (3) 

Eq. (3) assigns to each significant correlation (αn<0.05) between the predicted and 
experimental values, a positive validity estimate qn((XZ(m),F(E)→[miRNA]) ranging 
from 0 to 1; to each insignificant, the negative estimate ranging from –1 to 0. For 
each prediction {[miRNA]Z(m),F(Ek)}, it gives overall 77 partial validity estimates 
qn(XZ(m),F(E)→[miRNA]), which it averages into the integral validity estimate following 
the Decision Making Theory (Fishburn, 1970): 

Q(XZ(m),F(E)→[miRNA]) = { Σn=1,77 qn(XZ(m),F(E)→[miRNA]) }/77. (4) 

According to Eq. (4), the highest positive validity estimate 
Q(XZ(m),F(E)→[miRNA]) indicates the particular oligonucleotide Z(m) and the 
particular weight function F(i) to predict (Eqs. 1 and 2) from the known miRNA 
sequences {Ek} the of miRNA content [miRNA]Z(m),F(Ek) in A. thaliana that displayed 
the best fit with the experimental data. 

 

Figure 1. Examples of the weight functions F(i) used in Eq. (1). The most important  Z(m) with the 
length m are at ith position of the central (solid line) and 3′-terminal (dotted line) parts of miRNA 
with the length L. Overall, 180 F(i) functions of that two types were used. That 360 weight 
functions with all the possible Z(m)’s with a length of 1 ≤ m ≤ 4nt allowed us to study 
360*{14+14*14+14*15*14+14*15*15*14}»2*107 different quantitative variables XZ(m),F calculated by 
Eq. (1) for any miRNA sequence. 
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RESULTS AND DISCUSSION  

Using Eqs. (1)–(4), we analyzed the so-called training data subsets, amounting to 50 % 
of the overall data (Table 1, columns I–VIII, bold-faced), each representing uniformly all 
the experimental data studied. The rest 50 % of these data (regular font) were used as a 
control. For each analyzed miRNA with the sequence Ek, 2*107 weighted estimates of 
occurrences XZ(m),F(Ek) were calculated by Eq. (1). For each XZ(m),F(Ek), regressions (2) 
were constructed with the experimental data {[miRNA]k} (Table 1, columns I–VIII, bold-
faced) to predict the miRNA content {[miRNA]Z(m),F(Ek)} by their sequences Ek. Then 
Eqs. (3) and (4) allowed for deriving the validity estimates Q(XZ(m),F(E)→[miRNA]) for 
each of these predictions. Overall, 108 of such estimates Q(XZ(m),F(E)→[miRNA]) were 
obtained for eight training subsets (table 1, columns I–VIII, bold-faced). In the case of  
U-shaped weight functions, the regression (2) of the average miRNA content (Table 1, 
column VIII) according to the occurrence XWRHW,F1(E) of WRHW weighted with the 
function F1(i), having its maximum in the center of miRNA (Fig. 1, continuous line), was 
the most valid, Q=0.477. The column “WRHW” lists the values XWRHW,F1(Ek) calculated 
using Eq. (1) for all the miRNA studied.  

The correlation between these XWRHW,F1(Ek) and the average miRNA content 
{[miRNA]k}VIII is shown in Fig. 2a. For S-shaped weight functions, the regression (2) of 
the miRNA content in roots (Table 1, column VII) according to the occurrence rate 
XDRYD,F2(E) of DRYD weighted with the function F2(i) given in Fig. 1 (dotted line) was 
the most valid, Q = 0.466. The column “DRYD” lists all the values XDRYD,F2(Ek); Fig. 2b 
shows the correlation between XDRYD,F2(E) and miRNA content in A. thaliana roots, 
{[miRNA]k}VII.  

Since the WRHW and DRYD occurrences were independent (R = 0.324, α > 0.10), the 
linear regression of the average miRNA content in A. thaliana by has been standard made: 

[miRNA](Ek) = 0.782 + 1.314*XWRHW,F1(Ek) + 0.756*XDRYD,F2(Ek). (5) 

To this end, the pairs {XWRHW,F1(Ek), XDRYD,F2(Ek)} bold-faced in the Table 1, 
columns "WRHW” and “DRYD” and the corresponding experimental values 
{[miRNA]k}VIII (column VIII) were used. The column “Eq.(5)” lists the all values 
[miRNA](E) predicted. Bold-faced in this column are predictions for six miRNA that 
were not previously used for either optimizing Eq. (5) or search for the WRHW and 
DRYD (columns “WRHW”, “DRYD”, VII, and VIII, regular font). The bottom line of 
column “Prediction” contains the linear correlation coefficient R = 0.834 between these 
six independent predictions and the corresponding experimental values of miRNA 
average content in A. thaliana. These control predictions fit significantly the experimental 
data (α<0.05). In addition, the two bottom lines in Table 1 show the linear correlation 
coefficients between the predictions according to Eq. (5) and experimentally determined 
miRNA contents in all the seven A. thaliana organs studied. As is evident, these all 
correlations are statistically significant (α < 0.01).  

The difference in nucleotide context in 3′-end of miRNAs may attribute to the 
different binding of this part of miRNA sequences to the PAZ domain of an Argonaute 
protein, the core constituent of the RISC (Tomari et al., 2004) and nucleotide context of 
the central part in this case provides a different flexibility between the tightly bound 3′ 
end and the 5' half of the small RNA pre-organized for binding an RNA target (Tomari, 
Zamore, 2005). 
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Figure 2. Contextual patterns of miRNA. a – the average content of miRNA in A. thaliana (vertical axis, 
experiment) correlates with the occurrence of WRHW weighted with the function F1 (Fig. 1, continuous 
line) in miRNA sequence (horizontal axis, prediction). b – the miRNA content in A. thaliana roots 
(vertical axis, experiment) correlates with the occurrence of DRYD weighted with the function F2 (Fig. 
1, dotted line) in miRNA sequence (horizontal axis, prediction). Notes: dark circles and dotted line for 
training data and light circles and continuous line, for control data; R and α – linear correlation 
coefficient and its significance. 
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SUMMARY 

Motivation: Disruption of lipid metabolism is known to cause a set of severe human 
diseases. Transcription factor SREBP (Sterol Regulatory Element Binding Protein) is a 
key regulator of cholesterol homeostasis gene expression, hence, analysis of SREBP 
binding site data, as well as development of reliable methods for SREBP recognition are 
extremely important tasks.  

Results: For SREBP recognition we applied a combined approach. The approach 
compiled the SiteGA method that was implemented using a genetic algorithm involving a 
discriminant analysis of dinucleotide context and position weight matrix (PWM) method. 
We have studied distribution of potential SREBP binding sites (BS) in promoters, exons 
and introns of lipid-specific genes (LM-TRRD) and the EPD based set of human 
promoters. The highest densities of predicted SREBP BS were observed for promoters 
and introns of lipid-specific genes. The combined approach application may overcome the 
drawbacks of individual methods thereby the most reliable SREBP targets may be found. 

INTRODUCTION 

Transcription factors of the SREBP family play an important role in regulation of 
expression of genes controlling cholesterol level and synthesis of triglycerides in a cell, 
hence, analysis of SREBP binding site data, as well as development of a reliable methods 
for SREBP binding sites recognition are extremely important tasks. The active SREBP form 
is obtained from inactive precursor, this process being suppressed by increasing inner 
cellular cholesterol level (Brown, Goldstein, 1997). As known, the factors of this family, 
SREBP1a, SREBP1c, and SREBP2, belong to the family of bHLHLZ (basic helix-loop-
helix leucine zipper) proteins and bind to the sites of E-box and SRE (non-E-box) types. By 
taking into account the differences in the context organization of SREBP sites, it seemed 
reasonable to develop recognition methods for each of two sub-types individually. 
Moreover, the recognition accuracy for BS of E-box type appeared to be too low. The 
SREBP BS recognition is hampered by high false positive rate (Proskura et al., 2004), that’s 
why it is very difficult to get success in SREBP BS large-scale genome research. In order to 
decrease false positive rate we combined SiteGA (Levitsky et al., 2006) and PWM (Stormo 
et al., 2000) site recognition methods in our analysis. We observed differences in BSs 
density for lipid-specific and other non-specific nucleotide sequences.  
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METHODS AND ALGORITHMS 

In our analysis we used SREBP BS of SRE-type. The nucleotide sequence sets used in 
our analysis presented in Table 1. The BSs sequences with flanks with centrally located 
BS were compiled in SREBP train set. This set was extracted from the lipid metabolism 
section LM-TRRD of the TRRD database (Kolchanov et al., 2002). The promoters of 
genes of the lipid metabolism system were also compiled from the LM-TRRD database. 
All sequences contained sites from train set were removed from LM-TRRD set. The 
SREBP control set  was derived from literature sources and it was used for thresholds 
setting. For both methods these settings corresponded to 50 % of true positive rates, 
which were estimated by the control set. LM exons and LM introns sets were extracted 
directly from EMBL on the basis of information stored in LM-TRRD. In our analysis we 
also used the human promoters gene regions that were extracted from EPD database 
(Schmid et al., 2006). The random sequence set was obtained by shuffling of the train 
SREBP set (i.e. nucleotide content remained the same). 

Table 1. Samples of nucleotide sequences 
Sample name Sequence length, nt No. of sequence 
SREBP train 18 38 
SREBP control 18 8 
LM-TRRD promoters,  
[-1000;+100]1 1100 82 

LM exons                    561822 292 
LM introns                   1727782 209 
EPD promoters, [-1000; +100]1 600 1871 
Random sequences 900 1900 

1 location relative to transcription start site, lacking the 5′- or 3′-flanks of nucleotide sequences completed 
with the symbol “n”; 2  total analyzed length (the number of 18-nt window locations for both DNA 
strands). 

 
We used SiteGA (Levitsky et al., 2006) and mononucleotide PWM (Stormo, 2000) 

recognition methods in our analysis. The description of both methods implementation may be 
found elsewhere (Levitsky et al., this issue). First of all in our analysis we applied each 
method separately, than we combined them. That means that combined method considered 
analyzed sequence as a potential site if it was predicted simultaneously by both methods. 

RESULTS AND DISCUSSION 

Firstly we compared the recognition performance of SiteGA, PWM and combined 
SiteGA & PWM recognition methods. The control BS sequences were used for estimation 
of dependences of false positives (FP) vs. false negatives (FN) (Fig. 1). 

In general, three methods had the similar recognition performance. Nevertheless, it 
may be suspected that combined method may outperform others in the low false positive 
rate area, which corresponds to prediction of the most reliable BS targets. 

Than we considered SiteGA, PWM and combined SiteGA & PWM recognition 
methods application. We expected the highest SREBP BS densities in the LM-TRRD and 
introns sets. In contrast to these, the densities in the LM exons and random sets were 
suspected to be reduced. The EPD set may be considered as another independent negative 
background, that may contain less putative BSs than LM-TRRD set. Fig. 2 presents the 
results of these data analysis.  

As expected combined approach gave the highest potential site densities for LM-
TRRD and LM introns sets. On the contrary, as it was expected the lowest densities were 
observed for LM exons and EPD sets. The different densities of predicted by SiteGA and 
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PWM methods sites were found for random set. Moreover, application of PWM method 
for random set gave the highest density among all other sets tested by this method. This 
may be explained as a common trend of PWM methods to be sensitive to the nucleotide 
content of analysed sequences. The differences between two methods found for other 
nucleotide sequences sets were not so obvious (Fig. 2).  

 

 

Figure 1. Comparison of the recognition performance of the SiteGA, PWM combined SiteGA & PWM 
methods, estimated by control data set. 

 

 

Figure 2. The distribution of potential SREBP BS densities in regulatory regions, exons and introns  
of lipid-specific genes (LM-TRRD) and the EPD promoters. 

Finally to ensure the predictive capabilities of combined SiteGA & PWM method 
against each one taken separately we calculates the ratios of predicted site densities at 
different stringencies for LM-TRRD and EPD sets (Fig. 3).  

The LM-TRRD and EPD sets we considered correspondingly as ‘YES’ and “NO”, since 
the first one in comparison with the second contained more potential SREBP sites. To 
calculate ratios YES/NO we used the presented above control data (Table 1), i.e. thresholds 
used for SiteGA and PWM methods corresponded to consequently from 1 to 7 control BSs 
predictions. It may be concluded, that at least for two most stringent thresholds combined 
SiteGA & PWM method appeared to be significantly better than each method taken 
separately. This is also confirmed by the accuracy estimation (Fig. 1). Moreover, the 
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combined method may correct some drawbacks of separate methods (for example this refers 
to the tendency of PWM method to find comparatively many sites in random set, Fig. 2). 

 

 

Figure 3. The ratios of potential SREBP BS densities in regulatory regions of lipid-specific genes  
(LM-TRRD) and the EPD genes. 

Finally we may conclude that combined approach application may reveal most reliable 
SREBP targets. This conclusion may be considered as the strategy for large-scale genome 
research in the case when the high false positive rate don’t allow to reach the appropriate 
recognition performance. 
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SUMMARY   

Motivation: The (TG/CA)n repeats display polymorphic properties and exhibit cis 
regulatory characteristics. Analysis of distribution and regulatory effects of these repeats 
could provide insights into their role in the regulation of genome wide expression in the 
human genome. 

Results: The ratio of the number of genes with (TG/CA)n repeats to the total number 
of genes is uniform across all human chromosomes. The number of genes with repeats 
decreased with increasing repeat length and several genes (53 %) had multiple types of 
repeats in various combinations. Signalling and communication genes were rich with 
repeats whereas the genes of Immune and related functions and Information were poor in 
repeats. Proportion of genes in a functional group with repeats bears a linear relation to 
gene length. Most repeats are located in introns. Incidence of repeats caused lowering of 
transcript levels. These results were observed in independent microarray datasets and 
corroborates with single gene studies. 

Availability: http://expoldb.igib.res.in/expol. 

INTRODUCTION 

A potential regulator of transcription in eukaryotes is the dinucleotide (TG/CA)n 
repeat. The (TG/CA)n repeats are abundant in the human genome, polymorphic (n ≥ 12) 
and act as cis regulators of transcription (Sharma et al., 2003).  In addition, these repeats 
have been observed to be associated with recombination sites (Majewski, Ott 2000) and 
mRNA splicing (Hui et al., 2003) which elect them as functional elements (Sharma et al., 
2005). The (TG/CA)n repeats can be categorized into three types, Type I, Type II and 
Type III based on their length and biological properties. Type I repeats (6 ≤ n <12) are 
short, and have very low propensity for polymorphism. Type II repeats (12 ≤ n < 23) are 
likely polymorphic, as more than 93 % of the (CA)n repeats of n ≥ 12 units were found to 
display length polymorphism and act as cis regulators of transcription (Dib et al., 1996; 
Sharma et al., 2003). The Type III repeats (n ≤ 23) were shown to have a propensity to 
adopt conformations such as Z DNA (Haniford, Pulleyblank, 1983; Nordheim, Rich, 
1983; Peck, Wang, 1985; Meera et al., 1989) and were shown to be associated with 
recombination sites (Majewski, Ott, 2000). In general, (TG/CA)n repeats of n ≥ 12 units 
exert a down regulatory effect on transcription, which is positively correlated with the 
length of repeats (Agarwal et al., 2000). A few examples of genes, whose transcription 
levels were shown to be modulated by (TG/CA)n repeats are summarized in (Sharma et 
al., 2003; 2005). A model for the mechanistic role of (TG/CA)n repeats is shown in Fig. 1. 
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Recently genome wide expression technologies have generated data using microarrays. 
We present our studies using these data. 

 

Figure 1. A model for the mechanistic role of (TG/CA)n repeats as  cis  modulators of transcription. The 
RNA polymerase complex generates positive supercoiling ahead of it and negative supercoiling behind 
as it ploughs along the template DNA during transcription. In this movement, if it encounters (TG/CA)n 
repeats with propensity to adopt conformations other than the usual B form, transcription is affected. In 
most cases studied so far, this effect is that of retardation, reducing the amount of transcripts generated. 
Two forms of polymorphism are observed: Incidence polymorphism involves accretion or degeneration 
of repeats whereas secondary elongation involves expansion or contraction of repeats.  

METHODS AND ALGORITHMS 

Human Gene sequences were retrieved from http://www.ncbi.nlm.nih.gov/ 
LocusLink/. Uninterrupted Repeats that are more likely to be polymorphic were identified 
using the computer program SimRep (Sharma et al., 2003). Clustering of genes into 
families was carried out using the root symbol assigned by the Hugo Gene Nomenclature 
Committee (Sharma et al., 2005). Microarray datasets were collected from Hsiao et al. 
(2001) and Sharma et al. (2005b).  

RESULTS AND DISCUSSION 

The ratio of the number of genes with repeats to the total number of genes in all 
chromosomes falls in the narrow range 0.43 to 0.70 with a mean value of 0.59 indicating 
a near uniform distribution across all the chromosomes. The functional class of Signaling 
and communication had the highest number of genes with repeats and was significantly 
higher than the expected proportion assuming no preference for any of the functional 
classes (P < 0.0001). On the other hand, the classes of Immune and related information 
and Information had significantly lower proportion of genes with repeats (P < 0.0001). 
We also observed that the differences in the proportion of genes with repeats between the 
various functional classes is controlled more strongly by function than GC content, which 
varies in the narrow range 47–49 % whereas the proportion of genes with repeats varies 
widely in the range 29.6–61 %. Furthermore, there is a significant positive correlation 
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between the average gene length in each of the functional classes and the proportion of 
genes with repeats (R = 0.93, P < 0.007).  The proportion of genes containing repeats 
decrease in the order type I > type II > type III. This trend was observed in all functional 
classes. These observations indicate that indefinite expansion of repeats is disallowed. 
The abundance of short repeats and rare occurrences of long repeats suggests a power law 
type relationship. It is well known that power law relation is now observed in many 
genomic properties and the patterns of repeat distribution also likely fit to power law 
trend. Short repeats (type I) are however not likely to be polymorphic and several of them 
could be on way to decay by accumulating mutations. Using microarray expression 
datasets, comparison of genes with similar expression patterns such as Housekeeping 
genes revealed that genes with repeats (type II and III) have lower transcriptional levels 
compared to those without repeats (n < 6 units) (t-test, P < 0.0001). These results 
corroborate the observations on the role of repeats in single gene studies. We are now in 
the process of preparing a database EXPOLDB dedicated to facilitate these investigations 
using either gene centric or pathway centric approach. 
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SUMMARY 

Motivation: microRNAs are small 21–24 nt. single stranded RNA molecules that 
capable to silence gene expression on a posttranscriptional level. MicroRNAs are 
involved in a regulation of a significant part of eukaryotic genes. Several bioinformatics 
approaches were explored to identify microRNAs encoded genes in genomes of various 
eukaryotes (including Drosophila melanogaster) and viruses (Bartel, 2003; Kong, Han, 
2005). However, analysis of heterochromatin and interspersed repetitive elements has not 
been performed. Here we attempted to fill this gap and succeeded to find in silico 
microRNAs encoded by transposable elements (TEs) of Drosophila. 

Results: Canonical sequences of D. melanogaster (Dm) TEs were tested using 
previously developed methods for microRNAs identification. As a result several 
microRNAs and their precursors were predicted. Now we are trying to detect them in vivo. 

INTRODUCTION 

All known bioinformatics approaches of microRNAs identification are based on two 
main microRNAs features (Kong, Han, 2005): 1) as a rule, microRNAs are conserved 
among eukaryotes; 2) microRNAs precursors (pre-miRNAs) have well-defined and stable 
secondary structure (60–90 nt. hairpin). It was also noted that pre-miRNAs have defined 
GC % composition; for example, pre-miRNAs of Dm are characterized by 31.9–59.3 % 
GC content (Bonnet et al., 2004). To identify the microRNAs encoded by TEs of Dm we 
scanned TEs sequences to find hairpin-like structures; after that, the obtained candidate 
pre-miRNA hairpins were filtered by GC content and hairpin stability; then, we searched 
possible homologues of candidate hairpins in Ds and Dy genomes and verified their 
ability to form hairpins; finally, potential microRNAs of selected hairpins were 
determined by MiRscan program. 

METHODS AND ALGORITHMS 

Canonical sequences of TEs were downloaded from BDGP server 
(http://www.fruitfly.org/p_disrupt/datasets/NATURAL_TRANSPOSABLE_ELEMENTS.fa). 
Potential pre-miRNA hairpins were searched by srnaloop program in both 5′ and 3′ 
strands (Grad et al., 2003) with the following parameters: -w 4 -dw 1 -~2w -t 30 
-l 110 -sw 0. GC % of candidate hairpins was tested by written Perl script. Hairpin 
stability was verified by randfold (Bonnet et al., 2004) and sequences with p < 0.01 were 
collected. The search of hairpin homologues was done using WU-BLAST 
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(http://www.genome.wustl.edu/tools/blast) against Ds and Dy genomes; alignments were 
carried out by ClustalX (Thompson et al., 1997). Conservation of RNA hairpins were 
checked by alifold (Hofacker et al., 2002). Sequences of potentially microRNAs were 
searched by web-available version of MiRscan (http://genes.mit.edu/mirscan, Lim et al., 
2003). Drosophila melanogaster GenBank EST sequences were analyzed by BLAST on 
the Flybase server (http://flybase.org/blast/). 

RESULTS AND DISCUSSION 

Using srnaloop and filters we identified twenty conserved regions (~100 bp.) possible 
to transcribe into RNA with stable hairpin structure. The quality of these hairpins 
determined by alifold is evaluated. MiRscan was developed as computational tool to 
identify specifically microRNAs in hairpins that are conserved in two genomes and have 
the features of known microRNAs. The results of MiRscan analysis are presented as score 
values; the majority of known microRNAs has a score more then 10 (Lim et al., 2003). 
Table 1 shows the TE regions forming conservative hairpins with a score more than 10 at 
least in one pair of homologues (Dm/Ds and/or Dm/Dy). This list represents 11 hairpins 
that appear to be pre-miRNAs. Interestingly, TEs encoding predicted pre-miRNAs belong 
only to the LTR and LINE classes, but not to TIR. Sequences from Cr1A, Ivk and  
R1-element have high score in both Dm/Ds and Dm/Dy pairs (see Fig. 1).  

Table 1. Results of alifold and MiRscan analyses and searching in dbEST  
MiRscan score TE Hairpin position*, bp. Class alifold 

Dm/Ds Dm/Dy 
ESTs** 

Cr1А  3′ 2492–2601 LINE ++ 16,9 15,4 +,- 
Ivk   3′ 2488–2586 (pol) LINE +++ 14,1 12,3 none 
R1-element 5′ 1061–1170 (CDS 1) LINE + 13 11 +,- 
       

MAX-element 3′ 1723–1832 (border 
5′UTR-ORF1) LTR +++ 15 7 - 

blood 3′ 5792–5901 (CDS 3) LTR +++ 12,4 -4,5 +,- 
Het-A 3′ 5125–5232 (3` UTR) LINE ++ 10,1 -15,6 +,- 
springer 5′ 1563–1672 (CDS 2) LTR +++ 18,4 -0,1 none 
Quasimodo 3′ 6858–6965 (LTR) LTR ++ 17 -19 +,- 
       
Cr1A 3′ 837–946  LINE +++ 2,8 17,5 +,- 
BS 5′ 2815–2924, 

3′ 6410–6519 
LINE ++ 6,3 10,2 none 

gypsy6 5′ 1818–1927 LTR +++ -1 17 none 
Notes: * 5′ and 3′ indicate the corresponding strand of TE where srnaloop found the hairpin. ** + and – 
indicate the presence of hits in the same and in the opposite orientation as compared to the query 
respectively; none indicates the absence of hits. 

 
Five hairpins from MAX-element, blood, HeT-A, springer and Quasimodo have score 

more than 10 only in Dm/Ds pair; the rest hairpins from Cr1A, BS and gypsy6 have high 
score only in Dm/Dy pair of possible homologues. 

It is generally considered that evolution of TEs differs from evolution of the whole 
host genome due to their horizontal transfer between Drosophila species. Probably, this 
selective pattern of the proposed microRNA-genes conservation (conserved only in 
Dm/Ds or Dm/Dy pairs or both) is linked with phylogenetic peculiarities of the 
corresponding TEs in Ds, Dy and Dm species. This assumption now is checked. 
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Figure 1. Candidate pre-miRNAs with the highest MiRscan score. The images were generated by 
MiRscan program for Dm/Ds pair. The hairpin residues of predicted microRNAs are circled. The circled 
residues with asterisk indicate the nucleotide positions where the sequence of R1-element in Dm and Ds 
are differing. 

At least four proposed pre-microRNAs reside in CDS regions (Table 1): candidates 
from R1-element and springer are predicted to be on the sense strand; candidates from Ivk 
and blood – on the antisense strand. It is in agreement with early observation that 
microRNAs can be encoded within exons of mRNA encoded genes (Berezikov et al., 
2005). The hairpins from MAX-element, HeT-A and Quasimodo reside in the non-coding 
regions. The annotation for the others TEs isn’t available. 

To support the expression of candidate pre-miRNAs we searched the corresponding 
ESTs in the Dm dbEST (Table 1). Six candidates have hits in the same orientation as the 
query sequence and one (MAX-element) have hits corresponding only to the opposite 
strand of the region forming the proposed hairpin; the others have not any hits. It can to 
speculate, that the antisense transcription of TEs can be initiated by some intrinsic 
antisense TE-promoters or nearest non-TE promoters. The antisense transcription of 
several TEs was shown in vivo by RT-PCR (Klenov and Ryazansky, ms. in preparation). 
Probably, the absence of hits in dbEST for the several candidates can be explained by 
their typical for the most of known miRNAs expression in the time- and tissue-specific 
manner and the underrepresented Drosophila dbEST. 
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To ensure the expression of the predicted pr-microRNAs and microRNAs we plan to 
conduct the corresponding in vivo experiments. Also, it is interesting to determine the 
microRNAs targets; it will help to discover their biological functions. 
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SUMMARY 

Motivation: Gene expression in chloroplasts of algae and plants is regulated through 
binding of chloroplast mRNA by nuclear-encoded proteins. It is therefore important to 
determine such protein binding sites and study them from evolutionary perspective.  

Results: An algorithm of finding conservative protein-RNA binding sites is designed, 
also see details in (Lyubetsky et al., 2004). The algorithm was applied to infer these sites 
upstream of chloroplast genes. As a result, candidate protein-RNA binding sites were 
detected upstream of the atpF, petB, clpP, psaA, psbA and psbB genes in many 
chloroplasts of algae and plants. We suggest that some of these sites are involved in 
suppressing translation until the completion of splicing.  

INTRODUCTION 

Gene expression in chloroplasts of algae and plants is regulated by binding of 
chloroplast mRNA by nuclear-encoded proteins (Nickelsen, 2003). These proteins are 
involved in editing, translation and maintaining stability of chloroplast mRNA. Detailed 
analysis of regulatory sites is available from published evidence for alga Chlamydomonas 
reinhardtii, as well as some plants (Hauser et al., 1996; Zerges, 2000; Nickelsen, 2003). 
For example, protein binding to the psbA 5′-untranslated region in C. reinhardtii results in 
activation of translation (Hauser et al., 1996).  

Many chloroplast protein-coding genes contain introns. Thus, their translation should 
not start immediately after transcription. However, the translation machinery of 
chloroplasts closely resembles that of bacteria, particularly, in the ribosome being able to 
immediately follow the RNA-polymerase on mRNA strand. If the ribosome arrives at the 
end of exon before splicing is completed, the splicing process halts. To avoid this, in 
some rare cases the AUG start codon is derived from ACG by editing mRNA, which 
prevents translation from starting immediately (Zerges, 2000). RNA editing is known for 
chloroplasts of higher plants and is absent, e.g., in the liverwort Marchantia polymorpha.  

Our algorithm detected candidate protein-RNA binding sites upstream of atpF, petB, 
clpP, psaA, psbA and psbB genes in many chloroplasts.  

We suggest that some of these sites are involved in suppressing translation until 
splicing is completed. This conjecture is in agreement with observation that multiple 
alignments of the site-containing regions upstream of these genes are highly conservative, 
and is also supported by experimental evidence (Hauser et al., 1996). 
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ALGORITHM  

Consider a dataset of leader regions upstream of orthologous genes and a 
corresponding species tree. A set of shallow phylogenetic subtrees (groups of taxa) is 
selected in the species tree. For each of the groups, the algorithm searches for conserved 
regions of fixed length n (which can be varied) by finding cliques in a suitable 
multipartite graph. The basic idea is as follows. The algorithm finds clusters of very 
similar sites, called signals or motifs, of a fixed length n for each of these phylogenetic 
groups. From a motif, a weight matrix 4 × n is generated, where the kth column of the 
matrix, 1 ≤ k ≤ n, contains letter frequencies in the kth site position from the motif. 
Further, the algorithm generates clusters of weight matrices for different suitable n across 
all groups. The clusters of matrices are generated accounting for distances in the species 
tree between the ancestors of the initial phylogenetic groups. The algorithm of clique 
finding can also be used for constructing these clusters of matrices. In each matrix cluster, 
the matrices are replaced by the corresponding motif, thus defining sets of motifs. The 
described procedure can be iterated. The algorithm is described in detail in (Lyubetsky, 
Seliverstov, 2004). 

IMPLEMENTATION AND RESULTS 

Chloroplast genomes were obtained from GenBank (NCBI). The initial dataset 
contained 5’-untranslated intergenic regions from chloroplast genomes of algae and plants. 

Occurrence of predicted sites upstream of chloroplast genes is shown in the table.  
In many chloroplasts, the algorithm found long conserved binding sites containing 

conserved helices upstream of the genes atpF (ATP-synthetase subunit), petB 
(cytochrome b6), clpP (ATP-dependent Clp protease proteolytic subunit), psaA 
(photosystem I P700 apoprotein A1), psbA (photosystem II protein D1) and psbB 
(photosystem II P680 chlorophyll A apoprotein).GenBank annotation of the psbA gene of 
Amborella trichopoda probably misses a short N-terminal sequence, which might explain 
why in this case the algorithm failed to find the corresponding motif. 

For the genes atpF, clpP and petB, there is a strong correlation between the 
occurrence of splicing and the existence of the predicted protein-binding sites. On the 
other hand, with psaA, psbA and psbB no such correlation is found. With clpP, petB, 
psaA, psbA, the sites always contain helices, but for atpF and psbB they do not. 

Table 1. Occurrence of predicted sites and introns upstream of chloroplast genes atpF, petB, clpP, psaA, 
psbA and psbB. Notation: “+” – candidate protein binding site present; “-“ – no candidate binding site; 
“s” – introns present; “n” – no gene homolog in the species; “&” – helices in the site; “E” – editing of 
start codon 
Species atpF clpP petB psaA psbA psbB 
Euglena gracilis –s – -s –s -s -s 
Odontella sinensis – – – +& +& – 
Guillardia theta – – – +& +& – 
Cyanidioschyzon merolae – – – – +& – 
Cyanidium caldarium – – – – – – 
Porphyra purpurea – – – +& +& + 
Gracilaria tenuistipitata – – – – +& – 
Chlamydomonas reinhardtii – – – -s +&s – 
Nephroselmis olivacea – – – +& +& + 
Chaetosphaeridium globosum – +&s -s +& +& + 
Mesostigma viride – – – +& – – 
Anthoceros formosae +s +&s +&s +& +& + 
Marchantia polymorpha +s +&s +&s +& +& + 
Huperzia lucidula +s +&s +&s +& +& + 
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Species atpF clpP petB psaA psbA psbB 
Adiantum capillus-veneris +sE +&s -sE +& +& + 
Psilotum nudum +s +&s +&s +& +& + 
Pinus thunbergii +s +& +&s +& +&s + 
Amborella trichopoda +s +&s +&s +& – + 
Arabidopsis thaliana +s +&s +&s +& +& + 
Atropa belladonna +s +&s +&s +& +& + 
Calycanthus floridus +s +&s +&s +& +& + 
Cucumis sativus +s +&s +&s +& +& + 
Epifagus virginiana n +&s n n n n 
Lotus corniculatus +s +&s +&s +& +& + 
Nicotiana tabacum +s +&s +&s +& +& + 
Nymphaea alba +s +&s +&s +& +& + 
Panax ginseng +s +&s +&s +& +& + 
Spinacia oleracea +s +&s +&s +& +& + 
Oryza nivara, Oryza sativa +s +&s +&s +& +& + 
Triticum aestivum +s +&s +&s +& +& + 
Zea mays +s +&s +&s +& +& + 

DISCUSSION 

Conserved motifs detected upstream of the atpF, petB, clpP, psaA, psbA and psbB 
genes are likely to be involved in translation regulation. 

The conserved region upstream of atpF contains an AG-rich motif typical for 
ribosome binding sites, although being considerably longer than typical binding sites. 
This might be relevant to presence of introns in the gene, which suggests that translation 
initiates only after completion of splicing. 

Upstream region of the petB gene does not have a typical ribosome-binding site but 
instead contains a conserved helix, which might suggest posttranscriptional modification 
of the 5′-untranslated regions or binding of a translation activator. In all plants, the petB 
gene contains introns. 

Translational regulation of the psbA gene was experimentally observed in 
Chlamydomonas reinhardtii, where transcription is continuous, but translation is activated at 
light by a 47 kDa protein that forms a complex with other proteins and mRNA not interacting 
with mRNA directly (Hauser et al., 1996). The complex is inactivated in the dark. The 
conserved nature of this region in plants and algae might suggest that the translation regulation 
machinery for gene psbA preceded the evolutionary emergence of introns. 

Conserved regions in the 5’-untranslated regions of clpP and psbA genes were 
observed upstream of almost all their orthologs, even those lacking introns. Notably, 
conserved RNA motifs in the transcripts of petB, clpP, psaA and psbA contain helices 
with conserved flanks likely interacting with a protein mediator, which is typical for most 
regulatory systems (Seliverstov et al., 2005).  

Long conserved motifs were found upstream of the psaA and psbB genes, which lack 
introns in all species containing the motifs. On the other hand, in chloroplasts of 
Adiantum, all studied 5′-untranslaled regions are considerably diverged. Hence, the motif 
was not found upstream of petB, while it was in the five other cases. In the latter situation, 
however, site trees and species trees disagreed considerably at the node containing the 
name of the corresponding species. 

Other intron-containing genes in the studied chloroplast genomes were not found to 
have conserved 5′-motifs, or their 5′-untranslated regions were too short or absent. Two 
such examples are discussed. In studied plants, the upstream regions of gene rbcL 
encoding a ribulose 1,5-bisphosphate carboxylase/oxygenase subunit contain only a short 
conserved motif with the consensus ARGGAGGGACYT, which core constitutes a 
ribosome-binding site. We have no reason to assign a regulatory role to this motif, as the 
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rbcL gene in plants lacks introns. On the other hand, rbcL contains introns in chloroplasts 
of both algae Euglena gracilis and Chlamydomonas reinhardtii, and, in the latter case, it 
is regulated by mRNA-binding proteins (Hauser et al., 1996). This seeming discrepancy 
is not surprising, since in both algae the structure of 5′-untranslated region is completely 
different from that in studied plants.  

A different situation is with the ycf3 gene (photosystem I assembly protein Ycf3). It 
contains introns and a long 5′-untranslated regions not overlapping with other genes in 
plant chloroplasts, but it was not found to possess conserved motifs. 
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SUMMARY 

Motivation: Mapping of putative promoters within entire genome of Escherichia coli 
by means of pattern-recognition software PlatProm revealed several thousands of sites 
having high probability to perform promoter function. Along with the expected promoters 
located upstream from coding sequences PlatProm identified several hundred of very 
similar signals within coding sequences. Many of them may initiate transcription from the 
sense strand thus permitting synthesis of shortened mRNA products, not expected a 
priory in bacterial cells.  

Results: Here we discuss possible functional significance of intragenic promoters, 
estimate predictive capacity of our software in vivo and in vitro and provide 
experimental evidences that at least one promoter predicted within coding sequences is 
transcriptionally active.  

Availability: Coordinates of predicted transcription start points for alternative 
transcription are available by request (ozoline@icb.psn.ru). 

INTRODUCTION 

Genome-wide scanning by PlatProm revealed 709 genes, which have potential internal 
promoters with a propensity to produce shortened RNA products from the sense strand 
(Brok-Volchanski et al., 2005). At least 46 of them may initiate synthesis of RNAs 
previously detected in the fraction of small RNAs extracted from bacterial cells (Vogel et 
al., 2003) and considered as products of mRNA degradation. Basically, the presence of 
intragenic promoters may be required to intensify downstream transcription of neighboring 
genes (if they have proper orientation) or trap RNA polymerase near real promoters (if they 
are located at the beginning of the gene (Huerta, Collado-Vides, 2003)). However many 
predicted promoters lie far from the 5′-end of gene, while the nearest downstream genes 
have opposite orientation. In these cases internal promoters may be required to express 
alternative proteins or antisense RNAs to the products of neighboring gene. We, therefore, 
verified this possibility using available software (ORF Finder and RNA Structure), which 
allowed identifying open reading frames (ORFs) and characterizing folding propensity of 
putative RNA product. The scores of the transcription signals found within such genes were 
compared with known promoters and transcription activity of the promoter, predicted in the 
middle of the htgA gene was verified experimentally.  
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METHODS AND ALGORITHMS 

The search for alternative ORFs was done using ORF Finder (www.ncbi.nlm.nih.gov). 
Transcription terminators were found on the basis of the following criteria: 5–10 bp 

G/C-rich stem, 3–8 bases loop, free energy < -7 kcal/mol, ≥ 4U downstream of the stem 
(Argaman et al., 2001). Folding propensity of potential RNA products was estimated by 
means of RNA Structure algorithm supplied with thermodynamic scoring system 
(http://rna.chem.rochester.edu).  

Transcription activity of predicted promoters in vivo was tested using the total fraction 
of cellular RNAs isolated from cells taken during exponential and stationary growth 
phases. cDNA copies of target products were obtained by primer extension using 
RevertAid M-MuLV reverse transcriptase (Fermentas) and 32P-labeled gene-specific 
primers. cDNA products were separated from substrates using electrophoresis in 8 % 
polyacrylamide gel in the presence of 8M urea and visualized by radioautography.  

Potassium permanganate footprinting was performed as described (Zaychikov et al., 
1997). RNA polymerase – promoter complexes were formed at 36 °C in buffer, 
containing 50 mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 0.1 mM DTT, 10 mM MgCl2, 50 
mM NaCl and BSA (5 mg/ml). RNA polymerase was reconstituted from individual 
subunits, as suggested by Fujita and Ishihama (1996). 

RESULTS AND DISCUSSION 

PlatProm identified 709 genes containing strong promoter-like signals, from which 
shortened RNA products potentially may be synthesized. Most of them are expressed as 
independent transcription units or are the last genes of operons, thus suggesting that some 
internal promoters may be required to transcribe new genes in intergenic loci or intensify 
the expression of properly oriented downstream genes. The average size of intergenic 
regions flanking 3′-ends of such genes is slightly smaller (119 bp) than throughout the 
whole genome (~150 bp). In general that argues against the first assumption but is in line 
with the second one. Thus orientations of downstream genes were examined and it was 
found that two neighboring genes have similar direction in 318 cases.  

Transcription signals within remaining 391 genes may be required to synthesize RNAs 
with a capacity to encode shortened proteins or untranslated RNA products. That is why the 
sequences located downstream from predicted promoters were further analyzed to reveal 
alternative ORFs. For this purpose we used nucleotide sequences spanning from predicted 
promoters to the ends of genes and increased the length of each sequence by 150 bp 
downstream so as to take into consideration possible terminators located in intergenic 
regions. Shortened ORFs were found within 305 genes and in 175 cases they are supplied 
with suitable ribosome binding site (at least 4 matches to AGGAGGT). This set of internal 
promoters probably has the highest heuristic significance. Fig. 1 represents their scores in 
comparison with scores of 328 known bacterial promoters, which were absent in 
compilation used to generate weight matrices of PlatProm. One can see that there are many 
real promoters with low scores, however in most cases the values of S deviate from the 
background level for more than 3 Std. Surprisingly we found that the distribution of S has 
two well pronounced maxima (4.5 ≤ S ≤ 5.5 and 7.5 ≤ S ≤ 9.5). It could be speculated that 
corresponding promoters are subjected to different types of regulation. For instance, the set 
of weaker promoters may require transcription activators for maximal activity, while 
stronger promoters may be constitutive or their functionality may depend on repressors. In 
any case, for predictive mapping we used only strong transcription signals (4 Std higher 
than background level). Fig. 1 demonstrates that distribution of scores for predicted internal 
promoters also has maximum; positioning of this maximum is the same as in the case of real 
promoters and there is a fraction of very strong transcription signals (S ≥ 13.5, or 6 Std 
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higher than background). That means that the set of predicted promoters have some features 
similar with real promoters. All of them can not be ascribed to any known gene.   

Fig. 2 exemplifies such situation within gene htgA. It encodes positive regulator for 
promoters recognized by σ32 (heat shock regulon) and may be expressed from the σ32-
dependent promoter, located 82 bp upstream of the initiating codon of htgA (unrecognized 
by PlatProm) or from the weak σ70-specific promoter, situated 114 bp upstream of ORF. 
HtgA lies between yaaH and yaaI, transcribed from the opposite strand and fully overlaps 
with the putative gene b0011. At least 3 promoter-like sites are predicted in this region. 
The strongest one most probably controls transcription of yaaH. Others were found within 
htgA and are possibly required to produce both antisense or alternative RNA products in 
respect to genes htgA and b0011, as well as an alternative ORF found at the end of htgA.  

 

Figure 1. Distribution of scores (S) for 328 bacterial promoters (open circles) and 175 internal promoters 
(black circles), having a propensity to produce alternative mRNAs. Each point represents the number of 
nucleotide sequences, having scores within an interval S-0.5 ÷ S. An average S for non-promoter DNAs, 
estimated by PlatProm was -4.85. Arrows indicate levels of S, which are 3 and 4 standard deviations (Std) 
larger than this value. Only signals with S ≥ 4 Std were used for predictive mapping. Both curves were 
smoothened using running window 3. 

 

Figure 2. Schematic representation of the chromosome locus, containing gene htgA. Solid black lines 
and arrows drown above or below Х axis show positioning of genes in respect to the initiating codon of 
htgA and respective direction of transcription. Bars represent promoters predicted on both strands. Open 
rectangle indicates location of alternative ORF, while zigzag lines show putative RNA products, which 
may be synthesized between the predicted promoter and the first r-independent terminator.  
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Activity of two intrinsic promoters located on the top strand of htgA was verified 
experimentally. They form two clusters and may provide RNA products 92–108 and  
62–66 nt long. Primer 2 (Fig. 2) was used for the reaction of reverse transcription to 
detect the expected RNA products in total fraction of cellular RNAs. They were isolated 
from cells at exponential and stationary growth phases. At least three short RNAs: 92, 69 
and 67 nt long were detected in addition to longer products, originated from upstream 
promoters (Fig. 3a). Their abundance does not depend on the growth phase. Although 
sizes of these products are very close to the expected ones, some of them may be products 
of mRNA degradation. That is why we used the potassium permanganate footprinting 
technique to answer the question whether RNA polymerase forms open promoter 
complexes in these regions (Fig. 3b). 

 

Figure 3. Experimental verification of promoter activity by means of primer extension (a) and potassium 
permanganate footprinting (b). (a): Primer 2 and 1 ng of cellular RNA were used to obtain cDNA copies. 
cDNA products were separated on polyacrylamide gel (8 %) and visualized by radioautography. Arrows 
on the right indicate observed shortened RNAs. (b): PCR amplified DNA fragment (Primers 1 and 2 
shown in Fig. 1.) was used to study an RNA polymerase binding capacity to predicted promoters. 
Complexes were formed as described in Methods and Algorithms. RNA polymerase – promoter ratio 
was 1:4(M:M).  Marks “-” and “+” denote samples, containing free DNA fragment and DNA-protein 
complexes, respectively. Arrows on the right indicate bands representing the specific modification of 
unpaired thymines. Both gels were calibrated by standard G-specific ladder of another DNA fragment. 
Ciphers on the left reflect the sizes of indicated fragments.  

 



154 Part 1
 

Modifying only unpaired thymines, the potassium permanganate provides an excellent 
opportunity to reveal transcriptional bubble and, therefore, to localize specific RNA-
polymerase binding site(s) on DNA. The data obtained clearly indicate that in vitro open 
complexes are really formed and the binding site is located near the cluster of predicted 
transcription start points with high scores (92–108 bp upstream of primer 2). There are no 
any reactive thymines near weaker transcription signals (62–66 bp far from the primer) 
thus indicating that RNA polymerase selects more strong promoter site, while two 
products detected in the reaction of primer extension may result from RNA decay. Fig. 4 
shows the nucleotide sequence of the region containing active promoter.  

The observed pattern of reactivity against potassium permanganate allows a 
possibility that RNA polymerase can initiate transcription from all three predicted start 
points in the cluster (genomic coordinates are: 11090, 11099 and 11102 on the + strand). 
The major product observed in vivo (Fig. 3a) is, however 6–3 nt shorter than expected in 
the case if RNAs are initiated from promoter having almost perfect -35 and -10 elements 
(98 and 95 bp from primer), and more pronounced transcription bubble. Weaker upstream 
promoter with a capacity to give 107 nt RNA (initiated from position 11090) also binds 
RNA polymerase; although in vivo the product of exactly this length was observed only 
upon longer exposition. In any case, the internal promoter predicted within gene htgA is 
active. RNA transcribed from this promoter may encode a 31 amino acids long 
polypeptide, with ORF shifted on 1 position in respect to mRNA of htgA. This product 
has no sequence homology with any other known protein. Alternatively 158 nt long RNA 
transcribed between the verified promoter and the first ρ-independent terminator may 
function as antisense RNA to mRNA of hypothetical protein b0011. Free energy of 
folding for this transcript (-57 kcal/M) is typical for small regulatory RNAs of this length.  

 
 

 

Figure 4. Nucleotide sequence of the predicted internal promoter. Lower case letters indicate predicted 
start points of transcription. Suitable -35 regions are underlined; -10 regions are shown by larger font 
letters. Adenines complementary to thymines, modified by potassium permanganate are double 
underlined. Ciphers above the sequence indicate the expected length of the product originated from 
marked position.  

 
Taken together we conclude that PlatProm may be used as a tool predicting novel 

transcripts in the genome of E. coli. 
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SUMMARY 

Motivation: Representatives of the Bacillus genera are nonpathogenic and are suitable 
for producing various proteases. The cloning and sequencing of genes give the 
opportunity to predict the role of the proteins in the cells, its cooperation with other 
molecules and ways of their own regulation. 

Results: The analysis of glutamyl endopeptidase promoter region was initially 
developed. The presence of consensus sequences for binding with CcpA, AbrB, Spo0A 
regulatory proteins were shown.  

INTRODUCTION 

Many species of the genus Bacillus produce a variety of extracellular and intracellular 
proteases. Extracellular enzymes were extensively studied due to its commercial 
importance in the fields of medicine and household chemical goods. The investigation of 
new group of proteolytic enzymes designated as glutamyl endopeptidases begins after 
discovery in 1972 serine protease from strain V8 Staphylococcus aureus (Drapeau et al., 
1972). This enzymes posses narrow substrate specificity and split only the peptide bonds 
formed by α-carboxyl groups of glutamic and aspartic acids (Rudenskaya, 1998). At 
present more that 100 glutamyl endopeptidases have been assigned to the subfamily 
within the chimotrypsin family of serine proteases. All the enzymes belonging to this 
subfamily have in common the catalytic domain, characterized by the presence of 
“structurally conserved regions”. These are secreted proteins of 18–29 kDa, their pI 
varying in a wide range of pH values. Interesting particularity of these enzymes is the 
presence of one optimal pH value while hydrolyzing peptide substrates and two pH-
optimums while hydrolyzing protein substrates (Rudenskaya, 1998). Glutamyl 
endopeptidases demonstrate vary high resistance to the different inhibitors. Thus, 
enzymatic properties and structure of bacterial glutamyl endopeptidases are well enough 
studied, whereas their biological role is still unclear and too little is currently known 
about the mechanisms of biogenesis of these enzymes. Therefore, further research of the 
biosynthesis of bacterial glutamyl endopeptidases would be desirable. 

Glutamyl endopeptidase from streptomycin-resistant strain B. intermedius 3–19 
(BIEP) was isolated and characterized (Leshchinskaya et al., 1997). The gene encoding 
for B. intermedius glutamyl endopeptidase was cloned and sequenced (EMBL accession 
number Y15136) (Rebrikov et al., 1999). However, the mechanisms involved in the 
regulation of glutamyl endopeptidase gene expression remains unclear. Here we report the 
potential mechanisms controlled the expression of the B. intermedius glutamyl 
endopeptidase gene. 
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METHODS AND ALGORITHMS 

Nucleotide sequence of the gene for B. intermedius glutamyl endopeptidase analyzed 
in this study is available in the EMBL database (EMBL accession number Y15136). The 
DNA sequence preceding the gene for glutamyl endopeptidase was inspected for the 
occurrence of the characteristic –35 and –10 boxes of SigA-type promoters (Helmann, 
1995) by using the Softberry PROM (Prediction of Bacterial Promoters) network server 
(http://www.softberry.com). The consensus nucleotide sequences were detected using 
Vector NTI version 8 software. 

IMPLEMENTATIONS AND RESULTS 

To elucidate the mechanisms of gseBi expression the analysis of its promoter region 
was initially developed. The promoter region of B. intermedius glutamyl endopeptidase 
gene is shown in Fig. 1. Potential  –10 and –35 regions for recognition by sigma A (75 % 
of homology) identified by using Softberry BPROM network server are underlined.  

 

Figure 1.  The nucleotide sequence of gseBi gene. The position of the Shine-Dalgarno consensus 
sequence and the -35 and -10 regions are underlined. Potential Spo0A binding sites are shown in bold 
and underlined. A regions showing homology to the consensus sequences for site binding the 
catabolite repressor, TGWAARCGYTWNCW are boxed and to the AbrB regulatory protein, 
WAWWTTTWCAAAAAAW is shaded. 

The expression of genes, participating in sporulation, is controlled by two-component 
signal transduction system KinA/Spo0F/Spo0A. For such genes there is a consensus 
nucleotide sequence (TGNCGAA) for binding with the transcription factor Spo0A. 
Spo0A can serve either as a repressor or an activator of transcription, depending on the 
target gene (Strauch et al., 1990; Burbulys et al., 1991). In the regulatory region of the 
gene for glutamyl endopeptidase the nucleotide sequence sharing 86 % identity with the 
proposed consensus sequence for binding with Spo0A regulatory protein was identified. 
These sequences appeared to be organized as direct tandem repeats. 

The regulatory region of gseBi gene also contains four sequences with structural 
homology 86 % to specific target site for (WAWWTTTWCAAAAAAW) (Strauch, 
1995) for binding with pleiotropic repressor of the early sporulation genes, AbrB  
(-200-215). The promoter region of gseBi was screened for homology with the 
sequence, TGWNANCGNTNWCA, the consensus operator sequence for binding of the 
catabolite repressor CcpA (LeDeaux et al., 1997). Regions with 71–78 % homology on 
nucleotide position -88-101, -159-172, -206-219 downstream of the transcriptional start 
point were found.  
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DISCUSSION 

In natural environment microorganisms are always subjected to a variety of stresses 
and nutrient deprivation. In this period cells induce the production of biological-active 
molecules, including different enzymes such as proteases. 

Extracellular Glu-endopeptidase from B. intermedius is exerted at the late phase of 
bacterial growth. The biosynthesis of BIGEP as well as other Bacillus glutamyl 
endopeptidases is enhanced before sporulation (Gabdrakhmanova et al., 1999). This 
observation allows to suggest the possibility of participation of Spo0A-phosphorelay in 
control of glu-endopeptidase synthesis. The promoter region of this enzyme was shown to 
have the potential sites to binding with Spo0A-protein (Fig. 1). The organization this 
sequences as direct tandem repeats may enhance the frequency of binding with regulatory 
protein. This suggestion confirms with experimental data: in recombinant B. subtilis strain 
with inactivated Spo0A production of the glutamyl endopeptidase decreased 1.5-fold. 
Thus, found sites appeared to be usable, but this sequences not the only way to regulate 
the glutamyl endopeptidase gene expression. 

There is also the nucleotide sequence for interaction with AbrB protein. AbrB is the 
pleiotropic repressor of early sporulation genes. Results obtained by practical 
consideration demonstrated that the level of glutamyl endopeptidase gene expression in 
the strain carrying abrB mutation was higher than that in control suggesting possible 
binding of AbrB with promoter region of the gse Bi and the following negative control.  

As is generally known, many degradation enzymes are under control of catabolite 
repression mechanism. CcpA, a member of the family of transcriptional regulators, is 
believed to be central to catabolite repression of many catabolic operons in gram-positive 
bacteria (Henkin, 1996). CcpA protein binds specifically to the cre (catabolite-responsive 
element) sequence in the target genes, preventing transcription initiation in the presence 
of glucose. In promoter region of gse Bi nucleotide sequence sharing 78 % identity with 
cre sequence was found, and, besides, several more sequences with 71 % homology with 
this regulatory element were identified (Fig. 1). The identification of cre-consensus 
sequence in gseBi gene promoter in conjunction with the experimental researches suggest 
the involvement of carbon catabolite repression in the expression of gseBi. But, in fact, 
the decrease of enzymatic activity in the presence of preferred carbon source occurs only 
at the early stationary phase. In our experimental study, we recorded no effect of glucose 
on glutamyl endopeptidase production during the late stationary phase. That is in 
accordance with literature data: transcription of the ccpA gene is mediated by the 
vegetative σA –factor, and during the late stationary phase, when sigma factors involved 
in sporulation are activated, ccpA expression decreases substantially. Thus, this data 
indicate the involvement of potential CcpA consensus sequence in the expression of gse 
Bi during the vegetative growth and its silence at the late stationary phase. 

The monitoring sites and experimental data suggest that two-component regulatory 
system Spo0F/Spo0A and global regulatory network including catabolite repression 
(CcpA) and AbrB-regulation would be involved in the control of gse Bi expression. 
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SUMMARY 

Motivation: The transcription factor p63 is a homolog of p53, the tumor suppressor in 
higher mammals. p63, but not p53, can be expressed from at least two alternative 
transcription start sites (TSS), yielding a full-length form from the upstream and truncated 
form (ΔN) from the downstream TSS. The ΔN form acts as p53 antagonist, which makes 
the understanding of its regulation an important task. To date, the regulators of the p63 
promoters are still to be identified. 

Results: Comparative analysis of the p63 promoter regions of several species revealed 
highly conserved combinations of transcription factor binding sites (TFBS), which are 
suggested as the models of the regulatory patterns for the up- and downstream promoters. 
The predicted involvement of RXR in the regulation of p63 is in agreement with the 
experimental data. The other predictions are presently under the experimental evaluation.  

With this work, we demonstrate the applicability of the methods of promoter modeling 
previously developed in our group to a new kind of task: investigation of unknown 
regulatory patterns in a single promoter based on phylogenetic comparisons. 

INTRODUCTION 

p53, p63, and p73 constitute a family of  DNA-binding proteins that share significant 
sequence homology. Both p63 and p73 can be expressed from at least two alternative 
transcription start sites (TSS), yielding full-length forms (transactivating, TA) from the 
upstream and truncated forms (ΔN) from the downstream TSS. The  up- and downstream 
TSS are under control of two distinct promoters. In spite of the structural similarity, p63 
and p73 demonstrate functional differences from p53 and between each other 
(Waltermann et al., 2003). Compared to p53, the roles of its homologs are more diverse. 
Although the TA forms of the factors can induce p53-responsive genes, the factors are not 
specifically assigned to tumor cells and cannot be defined as tumor-suppressors. p73 is 
frequently overexpressed in various malignancies, but also plays role in normal 
development of nervous and immune systems; p63 is known to be important for skin 
development, being specifically expressed in keratinocytes. Thus, the diversity of the 
functions and complexity of the transcription model makes the understanding of the 
transcription regulation of p63 and p73 a challenging task. 

Little is known about the regulation of transcription of the two homologs of p53. It has 
been shown that the p73 promoters are regulated by E2F, p53 and (indirectly) by TGFβ 
(transforming growth factor β), but these factors have either no or negative effect on the 
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p63 promoter. To date, there is no positive information about the p63 regulators. Thus, we 
decided to undertake a computational analysis of the promoters in order to supply the 
experimentalists with suggestions, which they could later confirm with their methods.  

METHODS AND ALGORITHMS 

Promoter sequences were extracted from ENSEMBL based on sequence homology to 
the corresponding regions in the human genome (AB055067 for deltaNp73 and 
AF124530 for dNp63). Homologous sequences were identified with NCBI Blast 
(http://www.ncbi.nlm.nih.gov). The set of the p63 upstream promoters contained 5 
sequences (human, mouse, rat, cow, and dog). The downstream promoters were 
represented by 6 species for the (human, mouse, rat, cow, dog, and chicken). The length 
of the sequences in both sets was 1500bp (-1399/+100). 

Negative training set consisted of all human promoter sequences from EPD 
database (1871 seq.). The set was checked for the absence of p63 promoters. The length 
of the sequences was 1500bp (-1399/+100). 

Multiple alignments of orthologous promoter sequences were performed with the 
Multi-LAGAN tool (http://lagan.stanford.edu/lagan_web/index.shtml) 

Search for potential binding sites was undertaken with the help of the MatchTM tool 
(Kel et al., 2003) (http://www.biobase.de/cgi-bin/biobase/transfac/start.cgi). The thresholds 
for the matrix search were adjusted in such a way that the matrix (or set of matrices) for 
each factor could re-identify 80% of the true positive set (i.e., the set of genuine binding 
sites). The binding sites for p63 (p53) were predicted with a tool P53MH (Hoh et al., 2002), 
which searches for two p53 binding sites separated by a gap up to 13 bp. 

The prediction of potentially functional TFBS pairs was performed by two independent 
methods: (i) set of approaches to promoter model construction as described in (Shelest, 
Wingender, 2005); the approach of distance distributions described in (Shelest, 2006). 

Databases 
Eukaryotic Promoter Database (http://www.epd.isb-sib.ch), release 77-1  
Ensembl Genome Browser (http://www.ensembl.org/index.html)  
TRANSFAC® Professional release 9.4 (http://www.biobase.de)   

RESULTS AND DISCUSSION 

The starting point of the analysis was the fact that the transcription of p63 is 
keratinocyte-specific; thus, it was reasonable to check in the first place the transcription 
factors active in these cells. The search for the “keratinocytes” in the field "cell 
specificity" in TRANSFAC database revealed 9 transcription factors (AP-2, Sp1, KRF-1, 
RXR-α, ESE-2, ESE-2b, POU2F3, ΔNp63, p63), from which only 6 possessed PWMs 
from the TRANSFAC matrix library. These 6 factors (AP-2, Sp1, RXR-α, POU2F3 (Oct-2), 
ΔNp63, p63) were taken for the analysis (ΔNp63 and p63 have the binding sites identical 
to p53, hence the same matrix). 

After the identification of single potential binding sites with the help of the MatchTM 
tool, we analyzed the occurrences of combinations of these TFBS. Up- and downstream 
promoters were considered separately.  

The predictions for the TF binding site (TFBS) combinations were made by two 
independent approaches. The first (Shelest, Wingender, 2005) considers 
overrepresentation of sequences containing certain TFBS pairs in the investigated set 
compared with a negative set. We adjusted the parameters in such a way that the pairs 
were present in 100 % of the investigated sets, and less than in 10 % of the negative 
training set. The results are shown in Table 1, right column. The second approach, called 
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“distance distributions approach” (Shelest, 2006), considers the pairs which occur on 
“overrepresented” distances in comparison with analytically calculated profile of distance 
distribution in the random case (i.e., when the binding sites are distributed randomly). The 
results of the application of this method are shown in the left column of the Table 1. Note 
that both approaches identified practically the same pairs (Table 1).  

On the next step of the analysis we looked whether the found combinations of TFBS 
were evolutionary conserved. For that we mapped the TFBS on the plots representing the 
conserved regions of the promoters (Fig. 1 and 2). 

Table 1. Comparison of the predictions of TFBS pairs made by the two approaches  
Distance distributions approach TFBS pairs approach 

A.  DOWNSTREAM PROMOTERS 
AP-2 – p53 (97-101)  
Oct-2-Oct-2-(34-41) Oct-2-Oct-2 (39-69)  
Oct-2 - Sp1 (84) Oct-2-Sp1 (84)  
Oct-2-RXR (12-15) Oct-2-RXR (15)  
RXR-RXR (30)  RXR-RXR (30)  
Sp1-p53 (23-34)  Sp1-RXR (39), (45) and (69)  
Sp1-Sp1 (38-52) and (126-135)  Sp1-Sp1 (126-130) 

B.  UPSTREAM PROMOTERS 
AP-2 – Sp1 (26), (32), (81-82)  AP-2 – Sp1 (80-82) 
AP-2-Oct-2 (52), (121-125)  AP-2-Oct-2 (52) 
AP-2-RXR (78-81) AP-2-RXR (81) 
Oct-Oct (30-31)  
Oct-2 - Sp1 (69-102) Oct-2 - Sp1 (78-84) 
Oct-2-RXR (7-10) Oct-2-RXR (7-8)  
Sp1-RXR (12), (72-82) Sp1-RXR (81) 
Sp1-Sp1 (5)  

Notes. Marked with bold font are the coinciding pairs. In parentheses is shown the distance range (i.e., 
not less than the first number, not more than the last). 
 

As it can be seen on the Fig. 1, the highly conserved regulatory module is constituted 
from TFBS for 3 factors: Oct-2 (POU2F3), RXR and Sp1. RXR sites can be used by 
retinoic acid, the involvement of which is in agreement with previously reported 
experimental data (Bamberger et al., 2002). 

 

Figure 1. Distribution of the TF binding sites in the regions conserved between the human p63 
downstream promoter sequence and five orthologs: cow (A), chicken (B), dog (C), mouse(D) and rat (E). 
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Figure 2. Distribution of the TF binding sites in the regions conserved between the human p63 upstream 
promoter sequence and four orthologs: cow (A), dog (B), mouse (C) and rat (D). 

 
The distribution of the sites in the upstream promoters (Fig. 2) deserves more 

discussion. One can notice that there are three “islands” of high conservation: –1380 - –
1000 (worse conserved between rodents and human), -600 - -500 (not present in cow) and 
–400 - +80. An interesting behavior demonstrates the combination of RXR-Oct-2 TFBS. 
It is conserved in the region –1380 - –1000 in cow and dog, but is not present in mouse 
and rat where this region is also not conserved. However, it appears now in the region –
600- -400, in which it is not found in cow, but is detected in other species, appearing 
twice in dog. We can speculate that this combination was present in two copies in the 
common ancestors of these species and retained as such in the dog and human, whereas 
cow has lost one and rodents the other copy. 

The predicted combinations are presently under experimental verification in the 
laboratory of Molecular Oncology headed by Prof. M. Dobbelstein (Göttingen). 
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SUMMARY 

Motivation: Variation in polyadenylation rates affect mRNA stability, translation and 
transport and could be mediated through variation of control sequences. Most plant 
transcripts possess multiple polyadenylation sites, and therefore it is possible to search for 
downstream elements of poly(A) signal (i.e. part of signal beyond 
polyadenylation/cleavage site) without usage genomic template, that extremely extend a 
range of organisms which can be analyzed.  

Results: We establish a special approach to search poly(A) signals around 
polyadenylation/cleavage site of transcript that based on EST analysis only. We applied this 
method to demonstration the structure of poly(A) signal in Oryza sativa and Triticum aestivum. 

Availability: Analysis pipeline, implemented as a set of Perl scripts and processed 
datasets available from authors by request. 

INTRODUCTION 

The 3` ends of most processed eukaryotic mRNAs have a poly(A) tail. Variation in 
polyadenylation rates affect mRNA stability, translation and transport and could be 
mediated through variation of control sequences. 

The polyadenylation process requires two major components: the cis-elements or 
poly(A) signals of the pre-mRNA, and the trans-acting factors that carry out the cleavage 
and addition of the poly(A) tail at the 3′-end. 

Primary information about the poly(A) signal elements was derived mostly through 
conventional genetic and some biochemical analysis. The availability of full sequenced 
genomes and expressed sequence tags (EST) provides an abundant resource for analysis 
of transcripts. Moreover, since most ESTs are primed from 3′ termini of mRNA, the EST 
resource is particularly enriched in final 3′UTR sequences and it is possible to search for 
poly(A) signals using bioinformatics tools. The efficiency of this approach has been 
proved by many publications revisiting the poly(A) cis-elements in different organisms 
(Brockman et al., 2005).  

But all this studies were conducted on organisms with full sequenced genomes. If it 
was not a case, studies were limited by sequence analysis until polyadenylation site only. 

We used a special approach to search for downstream poly(A) signals i. e. signals 
beyond polyadenylation/cleavage site of transcript. This approach gets possibility to use 
ESTs only and does not require genomic sequences. 
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METHODS AND ALGORITHMS 

We used EST datasets of Oryza sativa and Triticum aestivum, from dbEST (release 
10.20.05). The input EST datasets were cleaned up to remove contaminating sequences 
(vectors, adapter et al.). The ESTs with a poly(A) or poly(T) extremity of length 10 or 
more (exact Perl rules: /A{5,}.{0,1}N*A{5, }.{0,20}$/ or /^.{0,20}T{5, }.{0,1}N*T{5, }/) 
were retained, poly(A) and poly(T) stretches were removed and sequences were oriented 
in one direction. Known repeats were masked using Repeat Masker. Sequences were 
truncated till 500 nt parts, adjoining detected terminal poly(A) stretch and after that 
TGICL (Pertea et al., 2003) was run independently for set of sequences of each species. 
ESTs from every TGICL cluster (actually CAP3 contig) were aligned based on CAP3 
data and poly(A) sites distribution for cluster (i. e. hypothetical mRNA) were defined. 

Our approach for search cis-elements of poly(A) signals is based on the analysis of 
alignments of ESTs aligned with regard to the position of cleavage site. First, ESTs inside 
each cluster were aligned base on common sequence, and then sequence from the current 
CS till the end of the longest EST from the cluster was regarded as region beyond CS for 
current site. The same procedure was applied for each next site, except the most distal 
one,  for  which  information  about  region  beyond  CS  was  not  possible to get (Fig. 1). 

 

Figure 1. Schema of extended alignment construction for cluster of EST.  
CS – cleavage/polyadenylation site. 

 
 

Second, all extended by such manner ESTs were aligned altogether with regard to the 
position of cleavage site and the position dependent occurrence frequencies of the 
hexanucleotides (words) were determined. For single nucleotide composition analysis we 
used two different alignments one for pre- and another for post-cleavage site sequences. 

In order to retrieve genomic regions around each polyadenylation site (in this case we 
considered sites when at least two ESTs finished at the same position). ESTs formed valid 
polyadenylation sites where aligned on the rice genome (IRGSP Release Build 4.0) with 
the BLAT program (Kent, 2002). We retained alignments meeting the following criteria: 
contain final 3′ part of EST; length > 60 nt; E-value < 0.001; identity > 98 %; no dangling 
end in 3′ EST direction. For each polyadenylation site the +/- 300 nt region was extracted. 
Redundant sequences were eliminated. 
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For word count we used overlapping windows and counted all possible six-letter 
words in each nucleotide position of -35/+15 around each polyadenylation site. The  
Z-score was computed based on the first-order Markov chain model of the same region, 
via the rmes.gaussien application (Schbath, 1997). Hexamers with Z-score above 3 were 
selected for further analysis. 

Analysis pipeline implemented as a set of Perl scripts and use Bioperl and 
PostgreSQL. A statistical analysis was done in R. 

 

Figure 2. Single-nucleotide frequencies of sequences (a, c, e) and positional distribution of top 10 most 
frequent 6-nt words (b, d, f) around polyadenylation/cleavage site of plant pre-mRNAs. The species 
names are marked under each graph, the number of sequences used for each graph is shown in 
parentheses. The y-axis for a, c, e is fractional abundance of bases and for b, d, f is fractional abundance 
of 6-nt words; the x-axis is the location (nt) relative to the polyadenylation/cleavage site. In this case we 
required only one EST to establish a hypothetical poly(A) site. NUE – near upstream elements, URE – 
U-rich element. We used T not U here because EST is a cDNA. 
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RESULTS AND DISCUSSION 

The poly(A) signals have been found to differ widely among yeast, animals and plants in 
terms of signal location and sequence content. Most plant transcripts possess several 
polyadenylation sites, and those are usually situated within last 3′ terminal exon in a region 
of 100 to 200 nt in a relatively close-packed arrangement on the order of tens nucleotides 
apart. 3′ Expressed Sequence Tags (EST) provide an empirical method for locating the 
clevage/polyadenylation site of transcripts. After applying EST clustering, alignment of 
cluster members clearly show possible polyadenylation sites of respective mRNA 
(Gautheret et al., 1998). Moreover transcript-genome alignments can be used to retrieve the 
region downstream of polyadenylation sites, which allows to study the whole set of 
polyadenylation signal elements. However, in plants there are only a few full sequenced 
genomes and at the same time huge amount of ESTs available. In our work we utilized wide 
spreading of multiple polyadenylation site in plants to reconstruct sequences beyond 
polyadenylation site and compose alignments of such extended ESTs to search cis-elements 
of polyadenylation signals around polyadenylation site. Fig. 2 shows results of sequence 
analysis around polyadenylation/cleavage site for Oryza sativa, which were got using 
genomic sequences (a, b) and EST (c, d). Nucleotide profiles of genomic (a) and EST (c) 
datasets are very similar, the Spearmen rank correlation coefficients are 0.97, 0.87, 0.96, 
0.97 for A,G,C,T nucleotides frequencies respectively and p-value < 2.2e-16 in all cases. 

To define possibility of reviling known cis-elements we employed analyses of 
hexamer usage (Z-score and appearance frequencies). As it is shown in Fig. 2 (b, d) we 
have found some patterns that corresponded to specific elements of polyadenylation 
signal (shown by inset on Fig. 2b and 2d) which were recently reevaluated in a model 
plant Arabidopsis thaliana (Loke et al., 2005). To further validate our approach we 
analyzed sequences around polyadenylation/cleavage site in Triticum aestivum (Fig. 2e, f) 
and were also able to find all plant specific elements of polyadenylation signal. 

So proposed approach is valid enough and gives appropriate results.  
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SUMMARY 

Motivation: One of the most important problems when planning a genetic engineering 
experiment is to ensure the adequate pattern for transgene transcription. A database containing 
annotated published data on the promoters operating in plant cells with a certain specificity 
and activity may be used for solving this problem. Such specialized databases are yet absent. 

Results: We have developed the database on promoters (TGP), collecting the 
information on plant promoter sequences with experimentally verified specific transcription 
patterns including general, tissue-, stage-, and stress-specific activities. The database was 
constructed on the SRS platform and consists of three cross-linked parts: gene description, 
promoter description, and corresponding experimental promoter sequences. TGP is aimed to 
provide information for experiments on transgenic plants and may be useful for either basic 
research in molecular biology or biotechnological experiments. 

Availability: The database is available at http://wwwmgs.bionet.nsc.ru/mgs/dbases/tgp/. 

INTRODUCTION 

A correct planning of genetic construct design is a necessary condition for successful 
transgene expression. In the majority of cases, expression of a foreign gene in plant must 
follow a certain pattern, frequently, rather specific; for example, only in a particular tissue 
or at a particular developmental stage. Thus, choosing of an adequate promoter may be 
considered a most important stage in planning a genetic engineering experiment. In each 
particular case, this selection may be based on an individual systematic analysis of the 
relevant published experimental data; however, this is an inefficient and labor-consuming 
approach. A specialized database compiling the information about promoters operating in 
the plant cell with a certain specificity and activity may be used for solving this problem. 
The existing (related in the subject) information resources are incapable of solving this 
problem in its full value. The TRRD database is the closest to the standards of such 
information resource. Its section plantTRRD contains the information about plant genes 
and their promoters (Stepanenko et al., 2000). However, the plantTRRD format is 
oriented mainly to transcription factor binding sites, and this information is of a limited 
interest for planning genetic engineering experiments. The databases PLACE (Higo et al., 
1999) and RARGE (Seki et al., 2002). are also oriented to transcription factor binding 
sites. The information server AGRIS also contain the information about potential 
transcription factor binding sites of Arabidopsis thaliana (Davuluri et al., 2003). The 
database PlantProm compiles the promoter sequences of plant genes (Shahmuradov et al., 
2003) but lacks the functional characterization of the promoters. Thus, the available 
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sources fail to provide the quantitative information about the level of promoter induction 
and the dependence of induction on the size of promoter fragment. Selection of nucleotide 
sequences in the PLACE and AGRIS databases is also a rather laborious process. 

We developed the TransGene Promoter (TGP) database, containing the information 
about initial promoters and their deletion mutants obtained via annotation of experimental 
literature data. TGP comprises three constituent bases—TGP_GENE, TGP_PROMOTER, 
and TGP_SEQUENCE—cross-linked with one another. This provides a possibility to 
select promoters with the required properties including the origin, dimensions, and 
appropriate stress-, tissue-, and stage-specific activities for different experimental tasks. 
On demand, the user may retrieve the nucleotide sequence of the desired promoter as well 
as characteristics of the initial gene. 

IMPLEMENTATION AND RESULTS 

TGP is implemented on the SRS platform and consists of three constituent databases. 
Database on genes (a). This database compiles the information about the genes whose 

promoters are offered for the transgene design. Each entry of this database contains gene 
and product names (GENE, PRODUCT) as well as the name of organism and its taxonomic 
classification (SPECIES, TAXON). The field SOURCE indicates the database wherefrom 
the gene nucleotide sequence was extracted (EMBL), accession number of the sequence in 
this database (AC), and position of the start of either transcription (ST) or translation (SR) 
from the entry; if it is not available, then the experimental start of transcription (STexp) 
from the corresponding published source is indicated. The field KEYWORD contains the 
name of the process wherein the gene acts and characteristics of the gene; the field 
DESCRIPTION details the functional activity of the gene in various organs and tissues as 
well as its changes during ontogenesis. The entry for a gene contains also cross-references 
to the TGP subdatabases PROMOTERS and SEQUENCES as well as references to the 
literature source wherefrom the information about this gene was extracted (Fig. 1a). 

Database on promoters (b). This database accumulates information about functionally 
active promoters described in annotated scientific sources. Each entry of this database 
contains information grouped in 11 fields. The field LOCALIZATION specifies the 
promoter location relative to the start of transcription (ST, STexp) or translation (SR), 
reference to EMBL (AC), and location of the sequence given in the corresponding EMBL 
entry, for example, ST; from –1345 to +1; EMBL; U37336; from 730 to 2076. 

The field REPORTER indicates the product according to which the expression pattern of a 
given promoter is determined (mRNA, protein, or reporter enzymatic activity). The field 
SPECIFICITY describes the stage of organism development, organ, tissue, cell type, and cell 
cycle stage of the transgenic plant where the promoter is question was studied (Fig. 1b). The 
field INDUCER contains the names of inducers that change the activity level of the promoter 
in question, the concentration of inducers, and their action time (Fig. 1b). The field 
COMMENT provides quantitative information about the expression and induction levels of 
the promoter as well as the information about specific features of the genetic construct. 

Database on promoter sequences (c). This database contains nucleotide sequences 
of promoters annotated in the database (B). Each entry contains a full-sized promoter 
sequence described in the original published data, cross-reference to the promoter 
(PROMOTER_ID), and cross-reference to the gene (GENE_ID) whose promoter  
is described.  
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Figure 1. Examples of the TGP database entries: (a) gene description, (b) promoter description,  
and (c) full-sized promoter sequence. 

 
 
The TGP database compiles the information about deletion mutants of promoters, 

which display different specificities and transcription activities. Annotation of these 
data increases essentially the success rate in selecting the desirable promoter variant. 
SRS tools allow for indexing the fields of databases and search by the fields via a 
system of adequate queries. The TGP GENE database can be searched by the following 
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fields: gene name (GENE), protein name (PRODUCT), species (SPECIES, TAXON), 
and keywords (KEYWORD). The search by the field DESCRIPTION allows the tissue-
specific, organ-specific, and stage-specific genes to be displayed. This information is of 
special interest for the genes whose promoters were studied in cell culture, not at the 
level of overall organism. 

The main fields for the search of the TGP PROMOTER database are SPECIFICITY 
and INDUCER. The field SPECIFICITY contains the description of specific expression 
pattern for a given promoter in particular organs and tissues and at particular 
developmental stages. The field INDUCER allows for searching the database by the 
name of inducer that influences the promoter activity. It is also possible to search TGP 
PROMOTER by the fields COMMENT, REFERENCE, PROMOTER_ID, GENE_ID, 
and SEQUENCE_ID. 

Find below the typical queries to the GENE and PROMOTER databases: 
(1) Find the promoters activated by a particular inducer (INDUCER, COMMENT);  
(2) Find the promoters active in particular organs and tissues of transgenic plants 

(SPECIFICITY); 
(3) Find the promoters whose activity was studied during transgenesis of particular 

plant species (SPECIFICITY), for example, parsley, tobacco, or Arabidopsis; 
(4) Find all the genes (GENE) related to a particular process (KEYWORD, 

DESCRIPTION); and 
(5) Find all the genes (GENE) that act in particular organs and tissues (KEYWORD, 

DESCRIPTION). 
At present, the TGP database accumulates the information on various promoters of 

higher plants. Currently, it contains the data on 100 promoters, the corresponding 
sequences, and 30 genes. We plan to expand the content of TGP. 
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SUMMARY 

Motivation: To study the regulation of transcription, it is important to identify 
coregulated genes (regulons). One way to do that is to cluster similar potential regulatory 
signals found by various experimental or computational techniques, for instance, 
phylogenetic footprinting. This strategy does not require a priori information about gene 
coregulation and reports new potential components for known regulons. In addition, 
clustering may reveal new, currently unknown potential regulons. Such data are of 
particular importance for poorly annotated genomes.  

Results: We have developed a computer tool for automatic detection of co-regulated 
genes. It implements the phylogenetic footprinting technique to find potential regulatory 
signals and uses the clustering procedure to identify potential regulons. The tool is 
intended for the analysis of sufficiently closely related bacterial genomes. 

Availability: The tool was implemented in Java. The source code is available upon request. 

INTRODUCTION 

Predicting specific transcription regulation is arguably among the most important 
problems in modern molecular biology. Studies in the field employ experimental 
techniques, bioinformatics methods, and their combinations. A popular bioinformatics 
method is phylogenetic footprinting. Firstly, groups of orthologous genes are identified in 
a set of related genomes by protein sequence comparison. The upstream regions of 
orthologous genes are selected and in each group of such fragments common motifs are 
determined using more or less standard tools. Such a motif is considered a potential 
regulatory signal. This approach is of limited utility as it reports only a single site, not the 
complete regulon, that is, set of co-regulated gene within a genome. Indeed, a regulatory 
factor usually affects several genes in a genome. DNA sites bound by a particular protein 
are similar to each other and thus can be clustered. Thus a cluster of similar regulatory 
signals suggests a potential regulon. 

METHODS AND ALGORITHMS 

Our tool works in three main steps: identification of groups of orthologous genes, 
signal finding, and clustering. Dependent on a particular problem and available data, it is 
possible to start at any step.  
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To construct groups of orthologous genes we use the algorithm PHOG-BLAST 
(Merkeev, 2003). This algorithm was used to build the PHOG database of phylogenetic 
orthologous groups. PHOG-BLAST  is a completely automated procedure that creates 
clusters of orthologous groups at each node of the taxonomy tree (PHOGs – Phylogenetic 
Orthologous Groups).  An essential step in building this database was comparing protein 
complements of different species and orthologous groups of different taxa. To do it in 
reasonable time, PHOG-BLAST finds similarity between pairs of protein multiple 
alignments by converting them into “ancestral” sequences. This algorithm compares 
“ancestral” sequences using a special BLAST-like procedure and counts similarity scores 
used for finding orthologs and paralologs. 

The next step is to find potential conserved regulatory signals in regions upstream of 
orthologous genes. To do that, we use the SignalX algorithm (Mironov et al., 2000). It is 
a greedy EM-type algorithm which uses rank statistics at different steps. The advantage of 
this algorithm is that it does not require that most input sequences contain a signal. 
SignalX efficiently reduces the number of falsely predicted sites. 

The last step of our approach is clustering. We use the ClusterTree-RS algorithm 
(Stavrovskaya et al., 2006) to cluster a set of potential regulatory signals. This algorithm 
allows clustering signals of different lengths.  

The algorithm builds the binary tree and detects clusters corresponding to its nodes. 
To build the tree, ClusterTree-RS compares all signal motives with each other and merges 
the most similar pair into a new motif. After merging, the group of signals is considered 
as one signal consisting of all sites of the corresponding signals. Its similarity to the 
remaining signals is computed as 
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where kI  is the information content of the combined signal, ( , )jf i k is the relative 

frequency of nucleotide i at position k of the signal j, ( )jf k  is the average relative 

frequency in position k, 0.25 Nα  and Nα  are the pseudocounts. 
Equation (1) utilizes the Pearson correlation coefficient. The coefficient assumes a 

maximal value when nucleotide frequencies in a given position are the same in both 
signals. If the correlation coefficient is used as is, the similarity between the positions 
with a random distribution of nucleotide frequencies will be the same as between the 
absolutely conserved positions. To ascribe a greater weight to conserved positions, the 
correlation coefficient is multiplied by the information content. 

After tree-building, the algorithm considers all tree-nodes of the tree and identifies those 
corresponding to clusters. Each tree node corresponds to a sites set, which results from 
merging of two site sets corresponding to the child nodes. When the child sets of sites are 
similar (i.e., the corresponding nucleotide counter matrices are similar), the sets may belong 
to one cluster (i.e., contain the same signal). A considerable difference between the matrices 
suggests that the given node corresponds to the fusion of two different sets of sites, which 
correspond to two different signals. To establish whether the nucleotide counter matrices are 
similar or different, the algorithm computes the log-adds ratio: 
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where L is the alphabet size (L = 4), nj(i,k) is the count of nucleotide i in position k in a 
child node, Nj  is number of sites in a child node. With this likelihood ratio, the null 
hypothesis suggests that signals of the right and the left child node can be obtained from 
the pooled matrix of the current node. A node corresponds to a cluster if the log-odds 
ratio is positive for this node and negative for its parent node. 

All selected clusters are explored by the “noise” sites elimination procedure. Some 
signals identified at the previous step contain false predicted sites. Even when their 
fraction is low, these false sites distort the signal. It is rather difficult to eliminate such 
sites at an early stage, because the initial signals may few sites and there is no a priori 
information about the correct signal structure. However, when similar signals are 
clustered, there is a sufficiently large number of sites for each (now clustered) signal and 
the subset of statistically significant sites can be extracted. Then, all nonsignificant sites 
are eliminated from the cluster. 

The typical runtime of the tool is as follows: identification of orthologs in a set of 30 
genomes requires 5 hours; identification of candidate regulatory sites in a set of 20 350 bp 
fragments requires 1 minute; clustering of 30 000 motives requires 48 hours. 

RESULTS AND DISCUSSION 

Using the clustering procedure we have predicted some new members of known 
regulons in gamma proteobacteria and firmicutes. We have predicted new regulons as 
well. Some results are listed in Tables 1, 2 and 3. 

Table 1. Analysis of the gamma-proteobacterial sample with the ClusterTree-RS algorithm 
N Regulator Number of signals Number of sites Genes 
1 ArgR 7 21 yhcC, argC, argA, yjgD, argI 

2 PurR 10 45 
purL, cvpA, codB, purM, purC1, 
purE, fold1, purH, purT, yjcD 

3 LexA 8 35 
uvrA1, recN, lexA, ruvA, recA, 
dinP, umuD, uvrD 

4 MetJ 5 24 metJ, metA, metF, metE, yaeD 

5 Crp 8 36 
ycdZ, glpA, yiaK, yiaJ, cdd, 
yfiD, yeaA 

1The E. coli gene corresponding to the signal is indicated. However, the site was not found upstream of 
the E. coli gene, or was eliminated from the cluster as noise. The cluster contains sites found upstream of 
orthologous genes of related organisms. 
 

The column Genes shows E. coli genes corresponding to the signals of the cluster. The 
genes whose regulation by the given factor is unknown according to the DPInteract 
database (Robison et al., 1998) are set in bold. 

Table 2. Analysis of the Furmicutes sample with the ClusterTree-RS algorithm  
N Regulator Number of signals Number of sites Genes 
1 Cre_16 (CcpA) 41 27 yvfK, araE, amyX2 

2 HrcA 4 19 ydiL, hrcA, groES, htpG2 
3 CtsR_aln2 2 18 ctsR, clpE 
4 Fur 4 34 yfiY, fhuD, feuA2, yqkL 
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Table 3. New potential regulons identified by analysis of the EC and BS samples with the ClusterTree-
RS algorithm 
Set N Genes Function 

nrdD enzyme; 2'-Deoxyribonucleotide metabolism 
nrdA enzyme; 2'-Deoxyribonucleotide metabolism 
ubiE enzyme; Biosynthesis of cofactors, carriers:Menaquinone, ubiquinone 

EC 1 

proS enzyme; Aminoacyl tRNA synthetases, tRNA modification 
pyrR Attenuation (antitermination) of the pyrimidine operon (pyrPBCADFE) 

in the presence of UMP (pyrimidine biosynthesis) 
pyrP pyrimidine biosynthesis BS 2 

pyrF2 pyrimidine biosynthesis 
ylpC (fapR) Unknown BS 3 
yhfB (yhfC) Unknown 

1 The cluster contains a signal that initially did not include a B. subtilis site. The signal was derived from 
an orthologous gene set, which included genes of Fumicutes other than B. subtilis. The signal included sites 
found upstream of the Streptococcus pneumoniae PN_SP2107 and Streptococcus pyogenes ST_malM genes. 

2 The B. subtilis gene corresponding to the signal is indicated. However, the site was not found 
upstream of the B. subtilis gene, or was eliminated from the cluster as noise. The cluster contains sites 
found upstream of orthologous genes of related organisms. 

 
The column Genes shows Bacillus subtilis genes corresponding to the signals of the 

cluster. Genes whose regulation by the given factor is unknown according to DBTBS (Makita 
et al., 2004) are set in bold. A more interesting problem is to analyze poorly annotated 
genomes. We have applied our tool to genomes of alpha proteobacteria. One arising problem 
is that many genes in these genomes have unknown function and it is hard to say something 
about the common function of genes corresponding to the cluster, or to identify the 
transcription factor responsible for the identified signal. To solve this problem, we intend to 
assign functions to the groups of orthologs based on existing annotation for at least one 
member of the group and on COG database annotation. We will then search for 
GeneOnthology functions over-represented in the derived clusters. 
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SUMMARY 

Motivation: The expression profiling of single cells using a microarray technology 
requires careful interpretation of the obtained data. It is crucial to distinguish between real 
differences in mRNA levels, sampling effects and random technical noise. 

Results: Simple mathematical models of expression data, based on sampling effect 
were developed and compared with real two-channel microarray data. We demonstrate 
that the real distribution of gene expression ratios for pairs of neuronal stem cells is much 
higher than predicted from sampling model.  

Conclusions: These findings confirm that there is significant difference in expression 
levels between individual phenotypically identical stem cells.  

INTRODUCTION 

The improvements in microarray technology provide a tool to analyze cellular 
heterogeneity at the level of a single-cell gene expression profiling. Amplification of the 
starting mRNA population is a crucial step required to generate labeled microarray targets 
from limiting amounts of RNA. It has been shown that global polyadenylated PCR-based 
amplification technique generates reliable data from picogram amounts of RNA 
(Subkhankulova, Livesey, 2006). However, high variability has been reported for two-
channel microarray analysis at single cell level.  This variability may be caused by 
sampling effect (the random picking of the low abundant transcripts) and therefore 
depends on mRNA species abundance and the efficiency of the amplification technique.    
Otherwise, tested single cells can be not identical at transcriptional level even if they 
possess high morphological and functional similarity. 

Here we provide the analysis of single cell expression data, based on estimation of 
efficiency of amplification technique and computational models fitted to the real 
distributions. We demonstrate that the real distribution of gene expression ratios for pairs 
of neuronal stemcells is much higher than predicted from sampling model. These findings 
confirm that there is significant difference in expression levels between single 
phenotypically identical stem cells. 
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MATERIAL AND METHODS 

Global polyadenylated PCR amplification. Neuronal stem cells were obtained from 
dissections of mouse embryo neocoretex at day 11.5. Tissue was disintegrated with 
papain dissociation system (Worthington Biochemical Corporation) and single cells were 
picked by thin capillary, washed in PBS and placed in PCR tubes with cell lysis buffer 
following by global polyadenylated PCR amplification, firstly suggested by Hiro 
Matsunami (Subkhankulova, Livesey, 2006). PCR products were purified with the 
CyScribe GFX Purification kit (Amersham Bioscience) and labeled with Cy3/Cy5 dCTP 
using Klenow DNA polymerase (BD Bioscience).  

Microarray hybridization. Expression microarrays containing 23232 65-mer 
oligonucleotides (Sigma-Genosys) were printed on Codelink slides (Amersham).  

Statistical methods. All statistical analysis was conducted using the R environment 

and the R package ‘Statistics for Microarray Analysis’. Log intensity ratios for each spot 
were obtained with background subtraction. Data normalization was performed using 
scaled loess normalization using Limma package.  

MODEL 

The gene expression difference between two cells obtained in microarray analysis 
generally may include a few components: 
1. The real difference  in gene expression profiles of two cells; 
2. The difference caused by random picking of mRNA species from each cell RNA pool 

(sampling effect); 
3. Technical noise arising from amplification, hybridization, washing procedures, uneven 

array printing, etc. 
Previously we have shown that technical noise is relatively low for the microarray data 
obtained in the hybridizations on the oligonucleotide arrays (Subkhankulova, Livesey, 
2006), therefore we ignored it in subsequent calculations. However it is impossible to 
distinguish the sampling effect from real difference between two single-cell samples until 
we know that they are completely identical. So we chouse a single cell divided in two 
parts as a model of identical samples (model A). The only source of diversity in 
expression profiles for these two parts would be uneven picking of low abundant mRNA 
copies. This diversity will strongly depend on number of the mRNA species (abundance) 
for particular gene and efficiency of the amplification technique. Then we calculated the 
distributions for given number of mRNA copies of particular gene from 1 to 170, 
assuming that if transcript’s abundance is more then 170 the microarray data would reflect 
only technical noise: 

)/())(( N
x

aN
xn

a
ni CCCp −

−= , 

where pi – is probability  for i-th gene to be selected x timesi from the mRNA pool 
when cell divided into two half, N – total number of transcripts in a single cell,  
n – number of transcripts picked from Ni,, a – number of mRNA transcripts for gene i-th; 
x – number of  transcripts for gene i-th selected from a.  

To estimate the total probability distribution for transcripts with abundance from 1 to 
12,000, we introduced the weight vector W ={w1,w2,…w170, w} which represents the 
percentage of genes with correspondent transcript abundance, where w is the weight for 
genes with abundance more then 170. We fitted the model distribution to real microarray 
data obtained for hybridizations of half to half single cells content by optimization the 
weight vector. After optimization weight vector was fixed for subsequent computations. 
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Then we repeated the calculations for two single cells model (model B). We 
hypothesized that expression profiles of any two neuronal progenitor cells are completely 
the same. Based of estimated efficiency of amplification technique equal to 90 % and 
fixed weight vector (W) we calculated the probability function (P) for genes to get the 
given expression log ratio (M) using the algorithm described above. This distribution was 
compared with real microarray data for targets from 12 neuronal progenitor cell co-
hybridized in pairs on oligonucleotide arrays. 

RESULTS AND DISCUSSION 

Efficiency of global polyadenylated PCR amplification. The sampling effect in 
generation of microarray targets depends on two factors: the absolute numbers of mRNA 
copies for given gene and efficiency of a few first steps of the amplification technique.  
The higher an efficiency of the first steps of the amplification (including cDNA synthesis, 
poly-adenylation, and first cycles of PCR reaction) the less mRNA transcripts are lost in 
fact, and the better the precision of expression profiling of target mRNA. With each cycle 
of PCR the efficiency of reaction becomes less important as total amount of original 
cDNA copies is growing and loss of 1–3 % of total number of copies is less crucial. We 
estimated that the first two steps (cDNA synthesis with following polyadenylation) 
produced 94 % of maximally expected amounts of polyadenylated ss cDNA.  The PCR 
was as efficient as 97–98 % for each exponential cycle. Therefore, the most crucial steps 
of amplification of original mRNA would reproduce the original mRNA profile with 
approximately 90 % efficiency.  

The fitting of a model distribution to real microarray data.  The probability (P) for 
genes to get the given expression log ratio (M) was calculated based on weight vector (W) 
as described above (model A). The model distribution fitted the best to real M-values 
distribution obtained from hybridizations of half cell vs. half cell (Fig. 1a) if vector W 
corresponded to the distribution of mRNA species when very a few genes (6.5 %) 
demonstrate relatively high abundance (more then170 copies) and majority of genes  
(63 %) are represented in total mRNA pool by low numbers of transcripts (less then 50). 

Comparison y expression data. We assumed that if tested single neuronal progenitor 
cells are absolutely identical therefore the diversity in microarray expression data will be 
entirely due to sampling effect, arising because of high proportion of low abundant genes 
and loss of transcripts during the amplification procedure. From experiments described 
above we estimated both these parameters: abundance of gene transcripts (W-vector) and 
the efficiency of amplification technique (90 %). Now we used these parameters to 
simulate the distribution of log(base2) expression ratios between two identical cells as 
described above (model B).  

The distributions of real expression data are much wider then it has been predicted in 
our model B, where the diversity between two samples is due only to sampling effect  
(Fig. 1b). It means that any pair of tested single cells possesses expression difference 
between each other which also contribute to wide distribution of M-values. Therefore our 
results disapprove the hypothesis about expression identity of progenitor cells.  

The variability of the transcript’s levels in neuronal progenitor cells while they posses 
high morphological and functional similarity may be a result of stochastic fluctuations 
intrinsic normal alive cells (Levsky, Singer, 2003).  



Computational structural and functional genomics and transcriptomics 179
 

 

Figure 1. The model distribution of M-values (log (base2) expression ratios) fitted to real microarray 
data (a). Dashed line – model distribution based on optimized weight vector (model a); black line – real 
distribution of M-values, obtained for half vs. half of single cell; pointed line – theoretical Gaussian 
distribution (sd = 0.42). The distributions of log(base2) expression ratios (M) for pairs of real cells are 
higher then predicted for two identical samples (b).  Black solid line – predicted distribution of M-values 
for two identical samples; gray lines – real distributions of expression ratios for pairs of 12 neuronal 
progenitor cells. Dashed lines – theoretical Gaussian distributions with sd = 0.5 (approximation of 
average microarray expression data) and sd = 0.11 (approximation of the model distribution). 

CONCLUSIONS 

1. We developed statistical models that can be used to validate of a single cell 
microarray expression data. 

2. Our results show that both sampling effects and different expression levels contribute 
to the wide distribution of log(base2) ratios obtained for two-channel microarray 
analysis of pnenotypically similar cells. 

3. Neuronal stem cells demonstrate high heterogeneity which possibly is a result of 
stochastic fluctuations in mRNA transcript levels intrinsic in cycling cell. 
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SUMMARY 

Motivation: Microarray experiments provide large amount of data, thus development 
of appropriate methods and tools of analysis is rather important. Clustering as one of such 
methods allows identifying biologically relevant groups of genes. 

Results: We developed an algorithm of the fuzzy c-means family, designed for clustering 
of microarray data and distance matrices, with genetic algorithm as optimization. 

Availability: The program, which implements the developed method and some 
additional features, is available at http://biorainbow.com/fuzzyclustering/ 

INTRODUCTION 

DNA microarrays are used to monitor gene expression in many areas of biomedical 
research. To analyze the increasing amount of data produced by this technology, 
clustering has become inevitable, see (Golub, 1999). 

Clustering methods are divided into hierarchical and partitional ones. Hierarchical 
algorithms associated with dendrogram construction are good for a small number of 
objects and are not suitable for a large volume of data due to laboriousness of the 
agglomerative algorithm. In partitional algorithms, the data are immediately divided into 
several clusters, whose number is estimated depending on conditions. Then the elements 
are transferred between clusters to optimize a certain criterion, for example, to minimize 
variation within clusters. Partitional clustering methods assign each gene to a single 
cluster, but information about the influence of a given gene for the overall shape of 
clusters also makes sense. In this case fuzzy clustering is more suitable. 

This work was aimed at the development and implementation of a clustering 
algorithm based on the fuzzy c-means in association with genetic algorithm, see (Hall et 
al., 1999) to provide a close to optimal solution to the problem of clustering of the given 
microarray dataset.  

METHODS AND ALGORITHMS 

Fuzzy c -means algorithm. (http://matlab.exponenta.ru/fuzzylogic/book1/index.php)  
Input information for clustering is the matrix of observations ( l n×  matrix) [ ]ijX x= , 
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where l  is the number of objects, n  is the number of characteristics (observations) of 
each object.  

The task of clustering is to partition an array of objects into groups (clusters) of 
objects that are “similar” to each other. In the n - dimensional metric space of 
characteristics, let us consider the distance between two objects as the measure of their 
“similarity”.  

The present work uses the fuzzy clustering method allowing each object to belong to 
several or all the clusters simultaneously with different degrees. The number of clusters c  
is considered a priori known. 

The cluster structure is specified by the membership matrix ( c l×  matrix) [ ]ijM m= , 

[ ]0,1ijm ∈  is the membership value of the j-th element to the i -th cluster, satisfying the 

following conditions: 1) 
1

1, 1,
c

ij
i

m j l
=

= =∑  and 2)
1
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l

ij
j

m l i c
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< < =∑ . 

To assess the quality of partitioning, the dispersion criterion is used. It shows the sum 
of distances from objects to the centers of clusters with the corresponding membership 

values:
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the exponential weight determining the fuzziness of clusters, [ ]ijV v=  is the nc ×  matrix 
of coordinates of the centers of clusters whose elements are calculated according to the 
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The task is to find matrix M, which minimizes criterion J. To do this, the fuzzy c-means 
algorithm based on the method of Lagrangian multipliers is used. It allows us to find the 
local optimum, that’s why different results can be obtained for different initiation processes. 

At the first step, the membership matrix M satisfying the conditions above is 
generated in a random way. Then the iteration process for the calculation of the clusters 
centers and the recalculation of the elements of the membership matrix values is initiated: 

1

2
1

2
1 1

1( )
( )

c
w

ij ij
k w

kj

m d
d

−

−

= −

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑  at 0ijd >  and 
1,
0,kj

k i
m

k i
=

=
≠

⎧
⎨
⎩

at 0ijd = ,  

where ( , )ij i jd d v x=  for 1, , 1,i c j l= = . 

The calculations are continued until the change in matrix 
2*M M− , where *M is 

the matrix at the previous iteration, becomes smaller than the preset stopping parameter ε. 
Let us consider the selection of the exponential weight value. The larger is this value 

the fuzzier is the matrix of membership, and at w → ∞  1/ijm c= , i.e. all the objects are 
distributed among all clusters uniformly. Usually 2w =  is set, but it was found out that 
this value is not suitable for data produced with microarrays. For the calculation of a more 
suitable value our program uses experimentally determined formulas, see (Dembele, 
Kastner, 2003). ijm  values depend on the distances between the elements and the centers 
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of clusters. The centers of clusters are close to some elements (genes), that’s why it can be 
supposed that there exists interrelation between the results of fuzzy clustering and the 

coefficient of variation cv  for the array { }
2

1( , , 1,w
w i jY d x x i j l−= ≠ =  where 

( ) / wwcv Y Y= σ . According to the experimental results, the equation ( ) 0.03wcv Y n≈ , 

where n  is the dimension of data, was proposed for determining boundary value ubw .  
Finally, the parameter value is chosen as follows: 

0 0
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Genetic algorithm. (Goldberg, 1989). The local minimum obtained with the fuzzy  
c-means algorithm often differs from the global minimum. The search for the global 
minimum of functional J can’t be realized due to a large volume of calculations, but there 
exist algorithms obtaining a solution close to the global minimum. We used a genetic 
algorithm based on genetic processes of biological organisms: biological populations 
develop during several generations obeying natural selection laws and according to the 
principle “only the fittest survives”. Usually, GAs give good results for parametric 
functions optimization problems, and it is a problem of this type that we are solving. 
However, like other methods of evolutional calculations, they do not guarantee finding 
the global solution during polynomial time. GAs do not guarantee that the global solution 
will be ever found, but they are good for seeking a “sufficiently good” solution to a 
problem within a “sufficiently short” time.  

Silhouette. The silhouette value can be used to assess the quality of clustering, see 
(Dembele, Kastner, 2003). Suppose gene ix  is in cluster rC . At fuzzy clustering, the 
number of the cluster is determined by the maximal value of the degree of membership. 

The following values are calculated 
1
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= . The silhouette value is within the interval [ ]1;1− ; if it is 

negative, the gene is considered poorly clustered. 

IMPLEMENTATION AND RESULTS 

Microarrays. The data produced as a result of experiments with microarrays can be 
presented in a form of matrix, where the lines will contain different genes, and the 
columns will contain their expression levels in different experiments. The Euclidian 
distance is taken as the distance between the genes. The coordinates of the centers of 
clusters are determined according to the formulas (1). If the data are normalized (the zero 
mean level of expression for each gene and the single mean square deviation), then 
clustering gives groups of genes with similar expression profiles. Otherwise genes with 
close expression values fall into the same cluster during all the experiments. 

The program also deals with somehow produced matrices of distances between objects 
and similarity matrices. 

The results of clustering are partially displayed in the program window as a list of 
elements for clusters with the degree of membership higher than the threshold value. The 
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stored file with the results contains algorithm parameters, list of the genes for clusters 
with the degree of membership higher than 1/c, matrix of memberships, coordinates of the 
centers of clusters, silhouette values if calculated by the user 

A test example. The algorithm functioning was tested on data sets produced in 
experiments on cell cycle investigation, which can be found at the site http://genome-
www.stanford.edu/Human-CellCycle/Hela/. 

Normalized expression values for genes participating in the cell cycle regulation, which 
were measured with 1-hour periodicity were taken for clustering. We performed the 
partitioning of genes into 5 clusters according to the number of cell cycle stages. The 
corresponding stage and, therefore, the cluster were predicted for each gene using the 
algorithm of hierarchical clustering, see (Whitfield et al., 2002). Suppose that such 
predicted distribution is exact; then the ratio of the maximal number of genes in a stage 
falling in one cluster to the total number of genes of this stage characterizes the accuracy of 
clustering with our algorithm. For some stages obtained results conform with sufficiently 
high accuracy (above 80 %), for some stages they do not. One of the reasons can be the 
similarity of expression profiles of genes of close stages (G2, G2/M). It is also quite 
probable that preliminary distribution with the hierarchic algorithm differs from the true one 

CONCLUSION 

Fuzzy clustering with the c -means method presents a convenient approach to isolation 
of genes tightly associated with preset clusters. Using it in a combination with the genetic 
algorithm, one can find a close to optimal solution to the problem of clustering. 

We wrote a program for clustering, in which the above methods are realized. In 
addition, the program provides for the possibility of automatic identification of the value 
of the fuzziness parameter of clusters, which is suitable for a concrete data type, and the 
evaluation of the quality of clustering. 

Besides, our program can be used to divide objects into groups knowing only the pair 
distances between them, without thinking about the coordinate presentation of these objects. 

The program is realized in Microsoft Visual Studio environment and is available at 
http://biorainbow.com/fuzzyclustering/. 
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SUMMARY 

In this manuscript, we present our Multiple Collapse Clustering (MCC) method for 
treatment of data-rich problems.  

Motivation: MCC is not limited to clustering of genes by similarity of their expression 
pattern: we suggest to compute parameters of piecewise continuous functions that 
approximates each gene. Our method is based on clustering of parameters of such curves. 

Results: We have developed a new method to analyze gene expression time series 
data. As a result of our clustering procedure for each cluster we obtain a smooth centroid 
curve and a set of curve mean parameters and standard deviations. On a test set MCC 
performed better compared to the K-means clustering.  

INTRODUCTION 

A number of great methods were developed for clustering of gene expression data. 
The choice of the method depends mainly on the data representation. Gene expression 
data can be either in the form of the vector of measured intensities (or ratios) or in the 
relational form (i.e., as correlation coefficients between pairs of genes (Yang et al., 2000). 
Clustering algorithms are divided into supervised, when a set of reference clusters is 
known, unsupervised, and hybrid. An example of the supervised clustering algorithm is a 
fashionable Support Vector Machines method, which can learn the decision boundaries 
between data classes. Popular unsupervised clustering algorithms include Self-Organizing 
Maps, K-means and hierarchical clustering.  

We developed a new method to analyze gene expression time series data. We assumed 
that the underlying biological process responsible for the change of mRNA levels in a cell 
can be described by a piecewise continuous function. We propose to approximate 
parameters of this function using multivariate normal distribution. Our method finds 
parameters of such function for individual genes and then genes are clustered based on the 
values of these parameters rather than observed expression. As a result of the clustering 
procedure, we obtain a smooth centroid curve and a set of curve mean parameters and 
standard deviations for each cluster. We believe that this approach better reflects 
biological continuity of cell processes. 

METHODS AND ALGORITHMS  

We would like to suggest a new method for clustering of data-rich time-series 
observations.  Our approach assumes that every cluster can be described by a smooth 
centroid curve. If N genes can be grouped into K groups by their expression profile, then 
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all genes that belong to a group k = 1, …, K have similar values of the “trajectory” 
parameters θ, where θ is an n-dimensional vector. Our proposed Multiple Collapse 
Clustering (MCC) method is based on the extension of the idea of Sahu and Cheng (Sahu, 
Cheng, 2002) to use the weighted Kullback-Leibler distance to find the optimal number of 
mixture components. The difference between the method of Sahu and our method is that 
we suggest collapsing multiple components following only one run of the Gibbs sampler. 

At the first step of MCC we assume that all genes are allocated to separate clusters. 
For every gene I = 1, ..., N, values of θi can be found by analyzing the following model in 
WinBUGS (Spiegelhalter et al., 2003): 
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where j = 1, ..., T and f(tj,θi)  is some nonlinear function. For simplicity we assume 
independence of the parameter vector components. This assumption greatly increases the 
speed of computation, but it is not necessary from the theoretical point of view.  Note, 
that Equation 1 is not a mixture model. The fitting of Equation 1 requires a data-rich 
situation (T >> dim(θi). At convergence, the posterior means of μ1, ..., μN and Σ1, ..., ΣN 
are obtained, and denoted by the same symbols. At the second step we construct a 
“Pseudo-mixture model” using parameter values estimated in the first step: 
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k the “nearest” gene k' is found, and if the distance dk,k’ is below a certain threshold, the 
genes are assigned to the same cluster. At the next step, the algorithm starts with 

(1)

2
N

K N≤ ≤ clusters, some of them are singletons and some contain two members. A 

new K(1) by K(1) matrix of distances is computed between original and collapsed versions 
for all clusters, nearest neighbors are identified for each cluster, and clusters are merged if 
the distances are below the threshold. The process is repeated until there are no more 
clusters to be merged.  

IMPLEMENTATION AND RESULTS  

To check the validity and limitations of the MCC approach we simulated T = 15 time 
points for 100 genes evenly partitioned into K=10 clusters.  We have chosen the trajectory 
f(tj,θi) to be (1) (2) (3) (3) (4) (3)( , ) ( ) ( ) exp( ( ))j i i i j i j i i j if t t t tηθ = θ + θ − θ − θ −θ − θ , where 
random  vector θi   has multivariate normal distribution and η() is a step function. 
Generated values of θi are shown in the Table 1 below. 
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Table 1. Parameters of cluster mean curves 

Cluster Θ1 Θ2 Θ3 Θ4 
1 1 1.086 4.394 0.6011 
2 1.101 1.136 4.257 0.3112 
3 7.072 0.6165 1.528 0.0598 
4 3.014 0.3739 4.328 0.3325 
5 0.5453 0.7643 8.342 0.3184 
6 4.528 0.4004 13.79 0.2319 
7 0.7576 0.3784 7.815 0.2938 
8 0.249 2.174 10.31 0.2991 
9 0.4947 1.224 4.883 0.1531 
10 2.825 0.9269 6.244 0.2999 

 
We ran 200,000 iterations on WinBUGS discarding the first 50,000 iterations as a 

burn in. The simulation took 30 minutes on a Windows NT PC (processor Intel Pentium 
2.2GHz, 1GB RAM). Post processing MCC written in C++ took approximately one 
minute to complete. It has recovered the correct number of clusters and produced correct 
values of cluster parameters (Table 2). Only 7 subjects were assigned to wrong clusters. 
In comparison, K-means clustering in implementation of Tseng (Tseng, 2005) 
“misplaced” 26 subjects. 

Table 2. Simulated parameters of cluster mean curves 
Cluster Θ1 Θ2 Θ3 Θ4 
1 1.00631 0.98939 4.3556 0.56018 
2 1.0291 0.98049 4.252 0.3118 
3 6.9405 0.66686 1.6311 0.05989 
4 2.89043 0.540829 4.3271 0.34505 
5 0.65213 0.593069 8.4598 0.31822 
6 4.543 0.65446 13.714 0.2594 
7 1.09162 0.5234 7.8505 0.30562 
8 0.3718 2.0025 10.262 0.28677 
9 0.5308 1.23579 4.8775 0.15281 
10 2.91466 0.673742 6.1841 0.316658 

DISCUSSION  

The proposed method may be used as a method of clustering of time  series data with 
an unknown number of clusters, providing not only the cluster membership as its output, 
but also a mathematical model of gene behavior. Although the total number of genes on a 
genome is computationally prohibitive to be analyzed by WinBUGS, the pre-processing 
step can reduce the problem to a manageable size by eliminating those genes that do not 
show differential expression during the experiment of interest. 

Multiple Collapse Clustering method performed better as compared to K-means 
clustering method on the simulated dataset analysis, even though K-means clustering was 
supplied the correct number of parameters. We plan to work on improving this result by 
utilizing properties of model parameter distributions found by the Gibbs sampler. The 
disadvantage of K-means method is that it requires a priori knowledge of the ultimate 
number of clusters and does not utilize the parameter distribution information for each gene. 

One of the biggest problems with the Multiple Collapse Clustering is its strong 
dependence on the WinBUGS version of the Gibbs Sampler that makes them inherit all 
WinBUGS limitations. In order to make it into a self-sufficient tool, it is desirable to 
implement the Gibbs sampler inside Multiple Collapse Clustering. We plan to develop a 
theoretical approach to find cut-off parameters for Multiple Collapse Clustering, and 
compare various clustering strategies based on the weighted Kullback-Leibler distance.  
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The Greedy nature of the nearest neighbor method may sometimes link members from 
two close clusters. The advantage of the nearest neighbor clustering method is its speed. 
However, for more refined results, we plan to look for slower and more sophisticated 
methods of clustering in the future. 

REFERENCES  

Sahu S.K., Cheng R. (2002) A Fast Distance Based Approach for Determining the Number of 
Components in Mixtures. Technical Report at University of Southampton. 

Spiegelhalter D. et al. (2003) WinBUGS User Manual, MRC Biostatistics Unit, Institute of Public 
Health, Robinson Way, Cambridge CB2 2SR, UK, Version 1.4. 

Tseng G.C., Wing H. Wong (2005) Tight clustering: a resampling-based approach for identifying stable 
and tight patterns in data. Biometrics, 61, 10–16. 

 



188 Part 1
 
Chapter # 

TOWARDS THE IDENTIFICATION  
OF ANTISENSE RNAS WITHIN GENES  
OF TRANSCRIPTION REGULATORS  

Tutukina M.N., Masulis I.S., Ozoline O.N.* 
Institute of Cell Biophysics, RAS, Pushchino, Moscow region, Russia  
* Corresponding author: e-mail: ozoline@icb.psn.ru  

Key words:  Escherichia coli, antisense transcription, regulatory RNAs 

SUMMARY 

Motivation: Almost one hundred of small regulatory RNAs (sRNAs) have been 
discovered in bacteria. Most of them are encoded in trans to regulated genes, while the set 
of known antisense transcripts, generated from within coding sequences (aRNAs) include 
only few species. Currently it is not clear how accurately this difference reflects the real 
situation. Thus, most methods used to reveal regulatory RNAs in genome-wide scale were 
based on searching for evolutionary conserved sequences or were purposefully attuned to 
intergenic regions. That prohibited identification of novel transcripts within coding 
sequences. To our knowledge a total of 1493 non-overlapping genes for untranslated 
RNAs have been suggested in “empty” genomic regions. To estimate the significance of 
antisense transcription we used pattern recognition software PlatProm, capable of 
predicting promoters independently on their location. More than a thousand of promoter-
like signals for antisense transcription have been found. Direct experimental verification 
of their activity is required to estimate a reliability of these predictions. 

Results: Here we analyze functional attribution of genes, possessing putative 
promoters for antisense transcription, characterize the distribution of promoter-like 
signals in the genetic locus containing gene hns and provide experimental evidence that 
RNA polymerase in vitro forms transcriptionally competent complexes with its internal 
promoter for antisense transcription. We also compare free energies of folding for known 
sRNAs with those of aRNAs, predicted in genes of transcription factors, and conclude 
that aRNA which may be expressed from hns has stability typical for other aRNAs.  

Availability: Genomic coordinates of predicted transcription start points for antisense 
transcription are available by request (ozoline@icb.psn.ru). 

INTRODUCTION 

Small regulatory RNAs act by multiple mechanisms utilizing RNA-RNA base pairing 
and regulate translation of mRNAs as well as their processing and stability. Unlike the 
plasmid, bacteriophage or transposon aRNAs, which are transcribed from the opposite 
strand of their target genes, most bacterial sRNAs are expressed from their own genetic 
loci (reviewed in: Ozoline, Deev, 2006). The possibility of antisense transcription from 
bacterial genes was however testified by the data of microarray analysis (Selinger et al., 
2000); directional cloning of short RNA species (Vogel et al., 2003; Kawano et al., 2005a) 
and a promoter cloning technique (Kawano et al., 2005a). The later experimental approach 
gave the largest contribution to the set of experimentally verified antisense RNAs. Since 
most aRNAs should be produced from their own promoters we also exploited this feature, 
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trying to predict promoters for antisense transcription by computational search (Brok-
Volchanski et al., 2005). In this study it has been found that significant fraction of genes, 
containing such promoters, encode regulatory proteins. That is why we selected promoters 
for antisense transcription predicted within gene hns as the first candidates for experimental 
verification. After it has been observed that RNA polymerase forms transcriptionally 
competent complexes with at least one selected promoter, we compared folding propensity 
of putative aRNAs with that of known untranslated RNAs so as to evaluate, how typical for 
aRNAs are stable secondary structures.  

METHODS AND ALGORITHMS 

Genome-wide searching for potential promoters has been done by promoter searching 
software PlatProm (Brok-Volchanski et al., 2005). 

Ability of RNA polymerase of interacting with predicted promoters was tested by gel-
retardation assay and potassium permanganate footprinting. Transcription complexes were 
formed at 35 °C in standard buffer, containing 50 mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 0.1 
mM DTT, 10 mM MgCl2, 50 mM NaCl, BSA (5 mg/ml), 0.2 pm of 32P-labeled DNA and 1 
pm of RNA polymerase. Interaction was allowed during 30 min. In gel-shift experiments a 20 
mkg/ml of heparin was added before loading the sample on 5 % polyacrylamide gel pre-
warmed to 35 °C. Gels were run at constant temperature until bromphenol blue migrated to 
the bottom of the gel. Potassium permanganate footprinting was performed as described 
(Zaychikov et al., 1997). The products of digestion were separated in 8 % polyacrylamide gel 
in the presence of 8M urea. Bands were visualized by radioautography. 

 

Figure 1. Schematic representation of the genetic locus, containing hns. Solid black lines drown above or 
below Х axis show coordinates of hns and tdk. Bars represent promoters predicted on both strands. Only 
signals with p < 0.0001 are shown. Open rectangle indicates location of putative ORF. Two caret lines 
show putative RNA products, which may be synthesized between promoters P6 and P6

* and the first ρ-
independent terminator. 

 
Transcription terminators were searched downstream from predicted promoters on the 

basis of next criteria: ≥ 5 bp G/C-rich stem, 3–8 bases loop, free energy of folding less than 
-7 kcal/mol, at least 4 uridine residues downstream from the stem (Argaman et al., 2001). 
Folding propensities of known sRNAs and potential aRNAs were estimated by means of 
RNA Structure algorithm supplied with thermodynamic scoring system 
(http://rna.chem.rochester.edu). The set of known regulatory RNAs was taken from 
compilations published by Kawano et al. (2005b) and Ozoline, Deev (2006). The search for 
alternative ORFs has been done using ORF Finder (www.ncbi.nlm.nih.gov). 
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RESULTS AND DISCUSSION 

The E. coli genome scanning by PlatProm revealed 1192 genes, which have internal 
promoter-like sites for antisense transcription. Most of them are located near the gene ends 
thus asuming the synthesis of long aRNAs. There are also 126 promoters, which are found 
less than 50 bp far from the 3′-end of genes. All together they comprise 1318 promoter-like 
regions, which may account for antisense transcription. Part of them may be required to 
transcribe upstream genes (~18 %) if they have similar orientation with promoters, or express 
new genes from within intergenic loci. Since in both cases putative transcripts still may 
function as aRNAs, such promoters were not eliminated from further analysis. Only 4.8 % of 
predicted promoters are found within 50 bp distance from the beginning of genes, where 
transcription start points for aRNAs affecting translation initiation are traditionally expected.  

The whole set of genes, which may be subjected to antisense regulation was classified in 
respect to functions of encoded proteins. Besides enzyme-coding genes, which are dominant 
in any genome, and genes with unknown functions, it includes many species encoding 
membrane, transport and regulatory proteins, as well as proteins participating in DNA and 
RNA synthesis and processing. Two groups of genes, encoding proteins for RNA processing 
and DNA binding transcription regulators are over presented in this set. Thus, 33.9 and 33.8 % 
of genes ascribed to these two categories contain potential promoters for aRNAs, while the 
percentage of enzyme-encoding genes is lower (29.8 %). Assuming a possibility of feedback 
regulation in the expression of transcription factors, this observation leads us to select such 
genes for experimental verification. Fig. 1 shows genomic organization near hns. It encodes a 
DNA-binding protein affecting expression of many genes and is transcribed from the 
promoter Phns, exactly predicted by PlatProm. There are many other promoter-like signals: P2 
may intensify expression of hns, P3 most probably controls mRNA synthesis of tdk (lies on the 
opposite strand), P4 and P5 may be required to transcribe putative ORF found by ORF Finder. 
The synthesis of aRNA may be initiated from promoters P6 and P6*.  

The scores of two P6 promoter-like signals are not high, however we found that RNA 
polymerase is capable of interacting with corresponding DNA fragment (Fig. 2a). Although 
the binding constant is low (much DNA remains free), bound RNA polymerase forms 
transcriptionally competent complexes, since potassium permanganate footprinting revealed 
the presence of unpaired thymines (Fig. 2b). Positions of reactive thymines correspond to 
the weaker promoter P6

* (genomic coordinates 1291865), which, however, does not exclude 
a possibility that complexes were also formed near both predicted start points, since in the 
region of expected DNA melting near the stronger promoter-like site there is only a single 
thymine residue (expected length of the fragment 116 nt), which in this particular promoter 
might be protected by the enzyme. In any case, RNA polymerase forms transcriptionally 
competent complex with internal promoter predicted for antisense transcription.  

The first ρ-independent terminator was found 388 bp downstream from P6
* (or 360 bp 

from P6). This is within the range of lengths, typical for bacterial sRNAs. Both aRNA 
products may form secondary structures with free energy of folding -109.4 and -89,2 
kcal/M, respectively. Since absolute values are not informative, we compared the stability 
of these RNAs with folding propensity of known sRNAs. RNA Structure algorithm was 
used to estimate free energy of folding for a total of 94 sRNAs, including 11 species of short 
(32–80 nt) aRNAs (Fig. 3). This comparison clearly indicates that stability of both aRNAs 
predicted within hns is slightly lower than expected for sRNAs of the same length. However 
structural features of aRNAs are not characterized so far. It is not clear how important is 
their capacity to form stable secondary structures and how large are typical values of their 
free energy of folding. Short length of known aRNAs does not allow direct comparison, 
while small number excludes adequate extrapolation. We, therefore try to compare stability 
of these products with that of another aRNAs, predicted within genes of transcription 
regulators (open rectangles in Fig. 3). Free energy of folding was calculated for putative 
aRNAs synthesized between promoters predicted within genes of transcription regulators 
and the first ρ-independent terminator. Sequence motifs, suiting to the formal criteria of 
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transcription terminators were found within 1000 bp distance downstream of 64 out of 77 
promoters. The remaining 13 aRNAs may be longer or their synthesis may be stopped at ρ-
dependent terminators. Fig. 3 demonstrates that RNA product, transcribed from P6

*, has 
folding propensity typical for other predicted aRNAs. 

 

Figure 2. Experiments verifying RNA polymerase binding activity by means of gel shift assays (a) and 
KMnO4 footprinting (b). PCR amplified DNA fragment (32P-labeled primer 1 and primer 2) was used as 
a template. Complexes were formed under standard reaction conditions as described in Methods and 
Algorithms and used either for gel-retardation experiment (a) or for footprinting (b). RNA 
polymerase:promoter ratio was 1:5(M:M). Marks “–” and “+” denote samples, containing free DNA and 
DNA-protein complexes, respectively. G-specific ladder of the same DNA fragment was used to 
calibrate the gel. Ciphers on the right reflect sizes of indicated fragments. Asterisks on the left indicate 
fragments appeared due to the reactivity of unpaired thymines.   

 

 

Figure 3. Correlation between free energy of folding and the size of RNA molecules. Open circles correspond 
to 94 known untranslated RNAs, while open rectangles correspond to putative aRNAs within genes of 
transcription regulators. Black rectangles show aRNAs, which may be transcribed from P6 and P6*. 

The free energy of folding strongly correlates with the length of RNA molecule. 
Significant deviations from expected values take place if nucleotide sequences permit 
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forming of long hairpins or are depleted in inverted repeats, which are required for base 
pairing. For the set of predicted aRNAs the value of correlation coefficient (K) is 0.978, 
assuming strong dependence on size. For the whole set of known regulatory RNAs K is 
smaller (0.956). This value further decreases (0.954) if 11 species of known aRNAs are 
eliminated from this set, assuming some specificity in their structural organization. Both 
these observations, as well as the fact that the first order regression lines do not overlap, 
indicate smaller stability of analyzed aRNAs comparing to another species of sRNAs. 

Thus, the first attempt to use computational approach to find genes subjected to 
antisense regulation revealed a large number of internal promoters, able to control 
production of aRNAs. The sets of predicted genetic loci encoding regulatory RNAs 
transcribed in cis and in trans appeared to be comparable in size. Promoter for antisense 
transcription (P6

*), predicted within gene encoding global transcription regulator Hns and 
analyzed in this study, exhibited features of classical bacterial promoter. An expected 
aRNA synthesized from P6

* has free energy of folding typical for aRNAs of the same 
length. Our data also indicate that the stability of aRNAs transcribed from coding 
sequences may be lower than that of sRNAs encoded by independent genes.  
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SUMMARY 

Motivation: C→U deamination ranks among the most widespread mechanisms of 
mitochondrial mRNA editing in higher plants. In the overwhelming majority of cases, 
editing affects the first and second positions of codons and results in "correction" of the 
codon, replacement in the amino acid sequence, and synthesis of normally functioning 
proteins. Experimental studies have shown that the 5'- and 3'-regions flanking an editing 
site are essential for precise and efficient editing. Nevertheless, no significant motifs have 
been found in the surrounding regions, and the editing mechanism still remains a mystery. 

Results: We analyzed editing sites in mitochondrial mRNAs of Arabidopsis thaliana by 
the methods of region-specific degenerate oligonucleotide motifs and trinucleotide weight 
matrices. Significant oligonucleotide regularities were detected in the region [–50;50] with 
respect to editing sites. As shown by the jackknife method, these signals can be important 
for editing. However, it was shown that the features detected were insufficient for efficient 
recognition of editing sites in higher plant mitochondrial mRNAs. 

Availability: http://wwwmgs2.bionet.nsc.ru./argo/. 

INTRODUCTION 

In spite of the fact that mitochondrial mRNA editing is widespread, its mechanisms in 
animals and plants are fundamentally different. In animal mitochondria, editing involves 
specific small RNAs referred to as guide RNAs, which have a clearly recognizable site of 
binding to the mRNA to be edited (Blum et al., 1990). In contrast, there is no evidence for 
the involvement of guide RNAs in mRNA editing in higher plant mitochondria. No distinct 
signals directing editing in higher plants have been found either. It has been shown that the 
distribution of nucleotide frequencies in the immediate vicinity of an editing site is 
significantly nonrandom (Covello, Gray, 1990). There is experimental evidence (Takenaka 
et al., 2004) that mutations in the [-40;-35] region reduce the efficiency of editing, whereas 
mutations in the [–15;-1] region entirely disrupt the process.  

We analyzed editing sites by search for sets of degenerate region-specific oligonucleotide 
motifs. This method recognizes imperfect conserved signals within a reasonable time range 
without prior alignment. The analysis revealed significant oligonucleotide motifs in various 
stretches of the 5'- and 3'- regions flanking the edition sites. 
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METHODS AND ALGORITHMS 

Sequences of 360 editing sites of Arabidopsis thaliana mitochondrial mRNAs were 
examined. Stretches of 101 bp in length were considered within the [–50;+50] region with 
respect to editing sites in mRNA coding regions. 

To distinguish regularities specific for editing sites from frequency features of various 
reading frames, we divided the sample of editing sites into three subsamples with regard 
to the edition position in the reading frame. For each reading frame, the sample of 
unedited 101 bp-long stretches obtained from the same mRNAs and centered by a C was 
used as negative controls. 

Search for degenerate oligonucleotide motifs was performed with the ARGO_Motifs 
program (Vishnevsky, Kolchanov, 2005). This algorithm involves clusterization of 
similar perfect oligonucleotides present in different sequences under study by an iteration 
method in the extended IUPAC code. 

The resulting motif is considered significant if it meets the following requirements: 
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where F is the proportion of editing sites containing the motif; P(n,N), the binomial 
probability of the random occurrence of the motif in the window in ≥ n sequences of N; 
Q, the proportion of the sequences of the negative sample containing the motif; and f0, p0, 
and q0 are threshold values. 

The editing site recognition function R was estimated by the ARGO_Viewer method 
(Vishnevsky, Kolchanov, 2005), based on the comparison of motif frequency and 
distribution in a sequence under consideration and in sequences of edition sites in the 
training sample.  

The positional context of editing sites was estimated by means of three-nucleotide 
weight matrices, which take into account local relationships between neighboring 
nucleotides. Positional weights were calculated as:  
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where fb,k is the frequency of the occurrence of trinucleotide b at position k in the sample 
of editing sites; eb, k is the frequency of its occurrence in the sample of nonsites.  

The score of an unknown sequence of length L in the course of its analysis with 
the weight matrix was calculated as the sum of weights of corresponding positions. 

,1..
.b kk LW w=

= ∑  

 

We proposed an integrated approach to recognizing editing sites in higher plant 
mitochondrial mRNAs. A sequence S was considered to be such a site if the value of the 
recognition function T(S) = 1.  
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Here r0, and w0 are boundary values.  
Samples constructed for three reading frames were used for training of recognition 

methods. Recognition quality was estimated in control sequences by the jackknife 
method. For this purpose, 30% of sequences were randomly chosen from the positive and 
negative samples to form control samples in the evaluation of recognition error. The 
remaining sequences were used for training. The procedure was performed in 100 
replications to obtain mean error values. The value of the recognition function threshold 
yielding the minimum value of errors of type 1 (false negative) and of type 2 (false 
positive) was taken as optimal. 

1 2 ,
2

E EE +
=  

where Е1 is the type 1 error and Е2 is the type 2 error.  
 

IMPLEMENTATION AND RESULTS 

Detection of degenerate oligonucleotide motifs  
We applied the ARGO_Motifs method for context analysis of editing site surroundings. 

The search was performed in a 30 bp scanning window moving at a pace 15 bp at p0 = 10-14, 
f0 > 10 %, q0 < 10 %. The analysis performed in three reading frames showed that the 
edition sites of the first three frames contained significant motifs in both 5' and 3'-regions 
(Table 1). The absence of significant motifs from the third frame appears to be related to the 
critically small volume of the sample. Motifs obtained for the first and second frames are 
exemplified in the table. Note that the parameters and distributions of motifs found in both 
frames (Fig. 1) are similar. Approximately 80 motifs were found in the first and second 
frames. Their significance P varied within 10-14 to 10-21, their frequency F in the site sample 
varied from 20 to 31 %, and in the sample of unedited positions Q, from 3 to 9 %. For 
example, motif YTYYNTKT, found in the [-35: -5] region with reference to the editing site 
in the first reading frame occurs in 31 % of editing-site sequences and only in 9 % of the 
mRNA sequences containing no editing sites.  

 
 

Table 1. Parameters of the most significant oligonucleotide motifs found in the vicinity of editing site 
regions in the first and second reading frames 

Motif Location 
in the site sample 

Occurrence 
in the site sample 

Occurrence 
in the unedited 
mRNA sample 

Probability 
of random 
presence 

of the motif 
First reading frame 

ATTYYNNT -50: -20 0.28 0.08 10-18 
YTYYNTKT -35: -5 0.31 0.09 10-20 

TTYCYNNT -20: +10 0.31 0.09 10-20 
TYNYTCBK -5: +25 0.35 0.09 10-20 
YTYNTTYT +10: +40 0.25 0.08 10-19 

Second reading frame 
TTTBTWWD -50: -20 0.18 0.07 10-17 

HTWYKDTG -35: -5 0.23 0.08 10-18 
WYTCVWNT -20: +10 0.27 0.09 10-20 
YCNWWTCW -5: +25 0.24 0.07 10-20 
TKNSAWWT +10: +40 0.22 0.06 10-18 
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Figure 1. Distribution of the number of degenerate oligonucleotide motifs with reference to the editing 
site. X-axis, the number of motifs in the window; Y-axis, location of motifs. The solid line corresponds 
to the first reading frame and the dashed line, to the second frame. 

 
Construction of the positional weight matrix 
Analysis of contrasting weight matrices for the first and second reading frames 

showed that both of them contained trinucleotides whose frequency at certain positions of 
editing sites and unedited mRNAs differs significantly. Examples of such contrasting 
trinucleotides are shown in Table 2. They are either underrepresented by a factor of ≥ 8 
(w < –3) or overrepresented by a factor of ≥ 4 at certain positions of editing sites in 
comparison with unedited mRNAs for both reading frames. 

 

Table 2. Mean positional weights of trinucleotides underrepresented (w < –3) or overrepresented  
(w > 2) at a certain position of an editing site in both the first and second reading frames 

Pos. AUA GAG GGA GGG GGC GCG CAG CGA CGC UCG GUA 
-3 -4.4 -4.2 -4.2 -3.2  -3.1  -3.6    
-2     -5.4    -5.3   
-1          2.2  
0            
1       -3.8    2.2 

DISCUSSION 

Our oligonucleotide analysis revealed many significant motifs in the 5'- and 3'-regions 
flanking editing sites. For both reading frames, the majority of significant motifs were 
found either in the immediate vicinity of the editing site or in the 5'-flanking region 
(Fig. 1). The motifs detected for two frames proved to be very similar. Most of them are 
polypyrimidine tracts dominated by U. It is worth noting that slightly fewer motifs were 
found for the second frame in the stretch [–35;–5] than in [–50;–20], which is in 
agreement with data reported in (Takenaka et al., 2004), where it was shown that the  
[–35;–15] stretch was less significant for operation of an editing site than the neighboring 
stretches.  

Analysis of the trinucleotide weight matrix shows that the local context of a 
mitochondrial mRNA editing site has notable constraints. Of importance is not only 
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presence but also absence of some short oligonucleotides. Our results confirm the 
experimental data (Choury et al., 2004) that the presence of G at position –1 can entirely 
inhibit edition, whereas the elevated rate of UCG at position –1 is in agreement with the 
known high frequency of U there. In addition, the restrictions imposed on sites are 
entirely asymmetrical. Virtually all of them are related to the 5'-region with reference to 
the editing site.  

It has shown that use of local regularities of editing sites is insufficient for their 
reliable recognition (Gray, Covello, 1993). To recognize editing sites in higher plant 
mitochondrial mRNAs, we proposed a combined approach, which involves both clearly 
located features, considered by the trinucleotide matrix method, and scattered motifs, 
detected by the ARGO package. We estimated the efficiency of this approach by the 
jackknife method. The least mean error values E for both reading frames considered 
equaled 0.27. The positional matrix best described the local context of a site, and 
oligonucleotide motifs, its distant features. Moreover, the method trained for recognizing 
editing sites at the first position of a frame recognized sites at the second position with the 
same mean error, 0.27, and vice versa. These data, taken together with the data on the 
similarity of motifs and their distribution, point to a similarity between the nucleotide 
contexts of editing sites in the first and second frames and, as a consequence, similar 
mechanisms of their operation.  

Thus, we conclude that the regularities found in our study are essential for efficient 
edition of higher plant mitochondrial mRNAs. However, it is obvious that these context 
regularities are not quite sufficient for this process. It is known that the secondary 
structure of an mRNA is important for operation of its editing site and improves the 
quality of its recognition (Cummings, Myers, 2004). It should be noted that the least 
recognition errors were reported in (Mower, 2005), where the authors invoked for 
recognition data on the positional amino acid conservedness among species. Obviously, 
this method can be applied only to genes having many homologs in other plant species. It 
is reasonable to suggest that taking into account secondary structures regularities, 
comparative analysis in addition to degenerated oligonucleotide motifs will improve 
editing site recognition. 
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SUMMARY 

Motivation: Numerous principles of constructing classifications are currently known. 
We propose the definition of “natural” classification and based on the definition a 
principally new approach to the classifications of nucleotide sequences. 

Results: A method for constructing the “natural” classification, algorithm, and software 
system DNANatClass have been developed. As the application result we propose the 
regularities matrices describing SF1 and EGR1 transcription factor binding sites. 

Availability: Scientific Discovery website: http://www.math.nsc.ru/AP/ 
ScientificDiscovery. 

INTRODUCTION  

Position weight matrix is the most common method for the transcription factor 
binding sites (TFBSs) recognition. In this paper we present the regularities matrices that 
arise from the concept of natural classification in its application to the nucleotide 
sequences. The concept of natural classification was investigated and developed in the 
previous papers (Vityaev, 1983; Vityaev, Kostin, 1992; Vityaev et al., 2002). The main 
property of the regularities matrices is that each of the nucleotides A, T, G, C in each 
position of the matrix is characterized by its regularities connecting it with nucleotides in 
other positions, whereas the weight matrices estimates the contribution of each nucleotide 
taken separately without any interconnectivity. 

Numerous principles of constructing classifications are currently known. The 
classifications are based on the hypothesis of compactness and various measures of closeness 
in a feature space, on resemblance of standards, supertargets, various criteria of classification 
quality and quality functionals, separation of distribution mixtures, etc. (Classification and 
Clustering, 1977). In contrast to the above-listed classifications the objective of the “natural” 
classification is discovering the laws of nature. There are different definitions of the natural 
classification that were done by the naturalists in different times (see overview in Zabrodin, 
1981). We propose the definition of the “natural” classification that is in accordance with the 
definitions of naturalists: “Objects should be divided into classes in accordance with the 
regularities satisfied by the objects. Objects of one class should obey one group of regularities, 
and objects of different classes should obey different groups of regularities. Objects of one 



200 Part 1
 
class should also possess some integrity which is understood as mutual prediction of object 
properties” (Vityaev, 1983). 

METHODS AND ALGORITHMS  

The following method realizes the above definition of the natural classification and 
includes three steps: regularities determining, classes formation and recognition (Vityaev 
et al., 2006a).  

1. Regularities discovery.  
Definition 1. The rule (Pε1

i1j1&...&Pεk
ikjk ⇒ Pε0

i0j0) is the probabilistic law if and only if: 
1) μ(Pε1

i1j1&...&Pεk
ikjk) > 0; 

2) μ(Pε0
i0j0/Pε1

i1j1&...&Pεk
ikjk) > μ(Pε0

i0j0/Pε1
i1j1&…^…^...&Pεk

ikjk), where ...^…^..  
means the absence of one or more predicates in the premise of the rule, and 

conditional probability is defined as follows: μ(Pε0
i0j0/Pε1

i1j1&...&Pεk
ikjk) = 

μ(Pε0
i0j0&Pε1

i1j1&...&Pεk
ikjk)/ μ(Pε1

i1j1&...&Pεk
ikjk). 

For the predicate Pε1
i1j1 the index i1 means the position number, j1 means one of the 

nucleotide {A,T,G,C}, ε = 0/1 means that the predicate has/hasn’t the negation. For 
example, the predicate P1

ikA means that in the position ik there is the nucleotide A. Let 
μ(ϕ) = μ(Pε0

i0j0/Pε1
i1j1&...&Pεk

ikjk) be the conditional probability of the rule ϕ. Given the 
sample of the sequences we discover the set of regularities F. By the estimation of 
regularity we mean the value μβ(ϕ) = –ln(1-μ(ϕ)) calculated with confidence level β. 

2. Classes discovery. Let us define the criterion of regularities interconnection. By the 
tuple of properties values xs1,...,xsm we call the set {Ys1,...,Ysm}, Yst ⊂ Ist, Yst ≠ ∅, t = 
1,...,m, Ist – the set of all values of the feature st. We designate that the regularity 
(Pε1

i1j1&...&Pεk
ikjk ⇒ Pε0

i0j0) is applied  to the set {Ys1,...,Ysm}, if {i0,i1,...,ik} ⊂ {s1,...,sm} 
and also xitjt ∈ Yit  if εt = 1 and (xitjt ∉ Yit) if ε = 0, t = 1,...,k. If the regularity is applied to 
the set {Ys1,...,Ysm} and the conclusion of the rule Pε0

i0j0 is fulfilled for that set (xi0j0 ∈ Yi0 
if ε = 1 and xi0j0 ∉ Yi0 if ε = 0), then we say that the regularity is satisfied for that set, but 
if conclusion is not fulfilled, then we say that the regularity is falsified for that set. By the 
criterion of regularities interconnection on the set {Ys1,...,Ysm} we designate the value: 

where П is the set of satisfied regularities, and О is the set falsified regularities. 
Definition 2. By the class we call the set {Ys1,...,Ysm}, for which the criterion Γ 

reaches the local maximum. 
The set {Ys1,...,Ysm} cay be presented as the matrix. For example the sequence 

[A][A][C][A][G][C][T][A][C][A][G][G][T][A][A][G][G][G][G][C][T] cay be presented 
as matrix M(Ys1,...,Ysm): 

 
A 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 
T 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
G 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 
C 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 

 
In addition to the matrix M(Ys1,...,Ysm) we define the regularity matrix R(Ys1,...,Ysm) 

as the matrix of predictions of the cells of the matrix M(Ys1,...,Ysm) by regularities. The 
sum of values of regularity matrix R(Ys1,...,Ysm) is equal to the criterion Г({Ys1,...,Ysm }). 
Also we use the involvement matrix I(Ys1,...,Ysm) to show the involvement of all 
predicates of the regularities in there interconnection, which have estimation μβ(ϕ) for 
each predicate of the regularity. 

∑∑
∈∈

−
ОП ϕ

β

ϕ

β ϕμϕμ )()(Γ({Y1,...,Ym}) 
=
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3. Recognition. Given the control set В of sequences, class 1{ , ..., }i i inO Y Y= , and the 
set of regularities F we can recognize the positive and control samples by calculating the 
score 1({ , ..., })i inГ Y Y  for every training and control sequence. When we define some 
threshold of the score, we can calculate the true/false positive rates for the training and 
control sets. 

IMPLEMENTATION AND RESULTS 

For the TFBSs recognition we have chosen the samples of sites SF1, EGR1. The train 
data sets were extracted from the TRRD database (Kolchanov et al., 2002). We added to 
the positive samples the sets of randomly generated sequences, which were generated 
with the same frequencies as for the positive samples. The number of randomly generated 
sequences was ten times more then the number of positive sequences. Then using that 
mixed sample we performed the classification of the whole data and discovered the 
class(es) for the positive samples. Exactly the one class was discovered for the SF1, 
EGR1 sites samples.  

The negative control sample was randomly generated with the frequencies as in the 
positive samples. For the recognition of the positive and control sequences we first 
performed the classification of that samples. Then the score Г was calculated for the 
positive and control sequences that were classified as belonging to the class. We defined 
the threshold for which the 50 % of positive sequences were recognized as belonging to 
the class. With this threshold we calculated the false positive rate. The more detailed 
description of results is depicted in the following table. 

Table 1. Table of results 
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SF1 54 100000 1670 54 81940 3900 25 2 2/100
000 

EGR1 22 110000 789 16 25502 900 7 0 0/110
000 

The class [T/C][C][A][A][G][G][T/C][C][A][G] was discovered for the SF1 site, 
where [T/C] means that on the first place there can be one of two nucleotides T or C. The 
class [G][C][G][G][G][G][G][CA][G][G] was discovered for the EGR1 site. 

The regularity matrix R([TC][C][A][A][G][G][TC][C][A][G])  
A 0.00 0.00 0.00 0.00 17.92 1512.67 0.00 0.00 0.00 0.00 
T 0.00 484.95 643.73 481.73 421.14 872.68 0.00 0.00 0.00 0.00 
G 154.92 0.00 2.31 61.84 0.00 0.00 0.00 0.00 0.00 0.00 
C 0.00 0.00 4.13 9.89 103.06 634.36 0.00 0.00 0.00 0.00 

 
The regularity matrix R([G][C][G][G][G][G][G][CA][G][G]). 

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
G 0.00 447.36 0.00 -47.98 -15.30 -2.69 0.00 515.56 0.00 0.00 
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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DISCUSSION  

Further we plan to improve the method and use it in cooperation with the 
ExpertDiscovery method (Vityaev et al., 2006b). We can discover the complex signals by 
the ExpertDiscovery system and use them as ordinary properties in the classification 
system DNANatClass. 
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SUMMARY 

Motivation: Correlation of gene expression with the degree of codon bias is known in 
many unicellular organisms. However, in a number of organisms such correlation is 
absent. Recently we have shown that consideration of inverted complementary repeats 
within open reading frames (ORFs) is necessary for proper estimation of translation 
efficiency (Likhoshvai, Matushkin, 2002). 

Results: An algorithm for estimation of potential ORF expression in an organism 
using its genome sequence is proposed. The potential ORF expression is estimated using 
the elongation efficiency index (EEI). Computation is based on estimation of ORF 
elongation efficiency considering three key factors: codon bias, average number of 
inverted repeats within coding sequence, and free energy of potential stem-loop 
structures. Quantitative translational characteristics of 240 unicellular organisms (213 
bacteria, 22 archaea, and 5 eukaryota) have been computed. Five potential evolutionary 
strategies of translational optimization are defined among studied organisms. A 
significant difference of preferred translational strategies between Bacteria and Archaea 
has been revealed.  

Availability: http://wwwmgs2.bionet.nsc.ru/mgs/programs/eei-calculator/. 

INTRODUCTION 

Elongation is the most energy- and time-consuming stage of mRNA translation. 
Therefore, high level of gene expression requires high rate of elongation. In many 
unicellular organisms this is achieved by non-uniform usage of synonymous codons, with 
preferences for a subset of “optimal” codons in highly-expressed genes (Sharp, Li, 1987; 
Andersson, Kurland, 1990). The subset of preferred codons in such organisms has high 
relative concentrations of cognate tRNAs (Gouy, Gautier, 1982; Ikemura, 1985). Codon 
bias increases translation rate because preferred codons tend to be translated more rapidly 
than synonymous alternatives (Kurland, 1991). Translational codon bias is correlated with 
gene expression level in many prokaryotes and some eukaryotes (Gouy, Gautier, 1982; 
Ikemura, 1985; Duret, Mouchiroud, 1999). 

Though codon bias indices like CAI (Sharp, Li, 1987) are good predictors of gene 
expression in E. coli, B. subtilis and many other organisms, they are not useful for 
organisms which do not have strong translational codon bias. This set of species includes 
Helicobacter pylori (Lafay et al., 2000), Borrelia burgdorferi (Lafay et al., 1999) and 
others. In these species codon bias is not correlated with gene expression, and indices like 
CAI can not be applied to gene expression prediction. 
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This problem prompted the authors to consider the negative influence of RNA 
secondary structures on the rate of elongation (Likhoshvai, Matushkin, 2002). To estimate 
this influence, authors proposed calculation of the average number of local inverted 
complementary repeats within ORF, which may form local stem-loop structures. 

METHODS AND ALGORITHMS 

Genome sequences. The flat files of 240 complete genome sequences of unicellular 
organisms were retrieved from NCBI GenBank FTP.  

Local complementarity index. In order to estimate the influence of local secondary 
structures on elongation efficiency, authors proposed local complementarity index (LCI) in 
two forms (LCIL and LCIE), with and without taking into account the free energy of potential 
stem-loops (Likhoshvai, Matushkin, 2002). The free energy of stem-loop structures was 
calculated according to the nearest-neighbor model (Turner, Sugimoto, 1988). 

Elongation Efficiency Index. After calculation of LCIL(j) and LCIE(j) indices for each 
ORFj, an iterative algorithm ranks ORFs according to their EEI values. The EEI(j) value 
reflects the relative average elongation rate of one codon in ORFj: 

EEI(j)=K/(w1Ta(j)+w2Te(j)), where K is a scale constant,  w1 = (0 or 1), and w2 = (0 or 1) 
are weight coefficients.  

The first term Ta evaluates the codon bias. The second term, Te(j), estimates the mean 
time required for translocation (Likhoshvai, Matushkin, 2002). 

Weight coefficients w1, w2 have values 0 or 1, and LCI(j) may be of two types, 
LCIL(j) or LCIE(j), so there are five forms of EEI: 

1) EEI1 (A), w1 = 1, w2 = 0, no LCI. Only codon bias is considered, and secondary 
structures are neglected. 

2) EEI2 (LCIL), w1 = 0, w2 = 1, LCI(j)=LCIL(j).  Codon bias is neglected. Only the 
number and lengths of secondary structures are considered. 

3) EEI3 (LCIE), w1 = 0, w2 = 1, LCI(j)=LCIE(j). Codon bias is neglected. Only the 
number and free energies of secondary structures are considered. 

4) EEI4 (A-LCIL), w1 = 1, w2 = 1, LCI(j)=LCIL(j). Both codon bias and number of 
secondary structures with account of their lengths are considered. 

5) EEI5 (A-LCIE), w1 = 1, w2 = 1, LCI(j)=LCIE(j). Both codon bias and number of 
secondary structures with account of their energies are considered. 

Estimation of correlation between EEI and gene expression. To estimate correlation 
of EEI with gene expression levels, we used ribosomal genes as a set of highly expressed 
genes in unicellular organisms. They were used as markers to evaluate the ability of EEI 
to predict gene expression level. 

For each of the five EEI types we calculated a pair of (M±R) – the relative elongation 
efficiency of ribosomal genes. M is the normalized mean of positions of ribosomal genes 
among all genes ranked by EEI, and R is the normalized standard deviation of positions. 
The normalization of (M,R) consists in linear transformation, so that M becomes 
symmetrically scaled relatively to zero: -100 < M < 100, and 0 < R < 100. 

All studied organisms may be classified into five translational groups according to the 
leading type of translational index Mi. An organism falls into one of five groups according 
to the maximal value of Mi (and minimal Ri). 

The statistical significance of Mi±Ri realization was estimated using Monte Carlo 
simulations. The null hypothesis consists in uniform random distribution of ribosomal 
genes among other genes ordered by EEI. For most genomes the statistical significance is 
of order p ≅ 10-8–10-12. 
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IMPLEMENTATION AND RESULTS  

Using the EEI values of genes encoding ribosomal proteins, we show that EEI is 
highly correlated with gene expression in 240 unicellular organisms.  

Bacteria. We computed translational characteristics for 213 bacterial genomes 
available at NCBI GenBank database on August 1, 2005. The values of the (Mi,Ri) pairs 
for some bacteria are shown in Table 1. The cumulative diagram of bacterial genome 
distribution over five translational groups is shown in Fig. 1. Most bacterial genomes fall 
into Groups 1 and 4.  

Table 1. Relative elongation efficiency of ribosomal genes in some bacterial genomes 

Genome 
Num of 
ribos. 
genes 

Num 
of all 
genes 

M1±R1 M2±R2 M3±R3 M4±R4 M5±R5 Group 

Escherichia 
coli K12 59 4270 89±33 23±63 23±59 75±42 61±56 1 

Mycoplasma 
hyopneumoniae 48 691 -56±55 73±34 64±44 41±53 47±51 2 

Nitrosomonas 
europaea 55 2573 -52±60 18±67 63±47 -6±69 57±49 3 

Borrelia 
burgdorferi   53 848 -14±60 57±47 57±52 65±41 53±50 4 

Pseudomonas 
putida KT2440 54 5350 74±26 60±33 67±27 86±17 92±13 5 

-100<Mi<100, 0<Ri<100 (i = 1, .., 5) are normalized mean and standard deviations of ribosomal genes 
positions among other genes ranked by EEIi values. The highest Mi with corresponding Ri (i = 1, .., 5) 
are shadowed. 

 
Archaea. We computed translational characteristics for 22 archaeal genomes.  
The cumulative diagrams of distributions for bacterial and archaeal genomes over five 

translational groups are shown in Fig. 1. The most numerous group is 4 (15 organisms,  
68 % of the total number). Less numerous is Group 2 (4 organisms).  

Unicellular Eukaryota. We have computed translational characteristics for 5 genomes 
of unicellular eukaryotes: S. cerevisiae, S. pombe, E. cuniculi, G. theta, and  
P. falciparum. Both yeast species and E. cuniculi fall into Group 1; G. theta, into 5; and 
P. falciparum into Group 2.  

 

Figure 1. Distribution of 213 bacterial and 22 archaeal genomes over 5 translational groups. 

DISCUSSION  

The results of computations imply high correlation between EEI and gene expression 
in 240 unicellular organisms. This indicates that elongation efficiency in most known 
unicellular organisms may be determined by two key factors – frequencies of preferred 
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codons and avoidance of nonspecific secondary structures. The EEI values of ribosomal 
genes are also high in organisms like H. pylori, where traditional codon indices (CAI) do 
not correlate with gene expression. We assume that EEI may be used for prediction of 
gene expression in such organisms, and other unicellular organisms as well. 

Domains of Bacteria and Archaea substantially differ in distributions by translational 
groups. In the translational characteristics of 68 % of the considered Archaea species, both 
codon bias and potential hairpins with account of their length are the key factors (Group 4). 
In contrast, the most populated among bacterial species is Group 1 (39 %), where 
translational efficiency is determined only by codon biases, and secondary structures are 
neglected. Such high importance of secondary structures in translation of Archaea may be 
associated with extreme temperature and pH conditions of their environment.  

The proposed approach allows to estimate whether gene expression in an organism is 
correlated with selection towards preferred codons (high M1) and/or selection against 
secondary structures (high M2, .., M5). This knowledge may be useful in planning 
transgenic studies with recently sequenced unicellular organisms.  
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SUMMARY 

Motivation: A context dependent conformational preference and deformability of 
DNA plays as a significant factor for a DNA site recognition by a DNA-binding 
regulatory and nucleosome proteins. An extraction of context-dependent conformational 
and deformability parameters from static X-ray structures of crystals of DNA duplexes 
includes artifacts due to a crystal packing. A molecular dynamic simulation of a large 
series of 14 base pairs DNA duplexes of different sequences in water solution at 
physiological conditions have been done. The context-dependent conformational 
parameters are extracted from the simulated trajectories of thermal fluctuations of three-
dimensional structures of DNA duplexes . It is found that helical parameters of pair steps 
TA, TG, CG are anomalous and sharply neighbor-context dependent.  

Results: molecular modeling provide data to expand bioinformatics data bases beyond 
the capacity of experimental methods and provide a new knowledge. 

INTRODUCTION 

Formation of the protein-DNA complex depends on two major factors: 1) structural 
affinity of the average three dimensional structure of DNA binding site, and 2) binding site 
deformability to make induced fit. A context dependent average conformational parameters 
of DNA and values of its thermal fluctuations can be itself an important data to make a 
prediction of a functional characteristics of a sequences. Therefore a reliable set of a context 
dependent conformational/deformability parameters of DNA can serve as a natural 
descriptors to describe a different biological properties of DNA sequences and its response 
on mutations. A complete set of context dependent conformational/deformability 
parameters is still unknown because analysis of experimental static crystal structures of 
DNA duplexes or protein/DNA complexes include artifacts due to crystal packing effects 
(Vorobjev, 2003). Molecular modeling of internal conformational dynamics of DNA 
duplexes due to thermal fluctuation is able to provide data of the context dependent average 
conformational parameters and its thermal fluctuations which defines a deformability. The 
molecular dynamics simulations of a large set of 14-base pairs DNA duplexes are 
performed in an aqueous solvent with neutralized counterions at physiological conditions. A 
dynamic average and value of thermal fluctuations of helical parameters for all pair 
nucleotide steps XY are extracted via statistical analysis of molecular dynamics data.  
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METHOD  

1.1 Description of context dependent properties of DNA duplexes  
A double stranded DNA duplex of A,G,C,T nucleotides can be represented as a linear 

sequence of ten types of pair-nucleotide steps XY (Vorobjev, 2003). The conformational 
parameters of pair nucleotide step of DNA duplex are shown in Fig. 1.  

 

Figure 1. Helical parameters for pair base step of the DNA-duplex. Twist (°) (TZ) – rotation around  
Z-axis normal to the  average base pair planes; Tilt(°) (TX) – opening angle between long axes of base, 
pairs-rotation around short  axes of base pare; Roll(°) (TY) – opening angle between short axes of base 
pairs in the direction of minor (major) groove, rotation around long axes of base pare; Propeller (PP) – 
angle between base planes of the Watson-Crick base pair. 

Helical parameters of the step XY are a function of the dinucleotide  XY type and 
flanking context of the both sides,  …X-3X-2X-1XYY1Y2Y3… . In general, the influence of 
the remote context on the step XY will decrease. Therefore the helical parameters 
dinucleotide step can be considered at different level of concretization of flanking 
sequences, i.e. simple pair step <XY> averaged over all flanking sequences, quartet step 
<X-1XYY1>, etc. The most important helical parameter affecting overall global spatial 
structure of DNA is the tilt which control bending of DNA rod into major or minor groves.  

1.2 Molecular dynamic simulations 
Molecular dynamics simulations have been done with amber6 (URL:2001) program 

using param98 force-field parameter set. Simulation protocol consist of the next stages:  
1) calculation of initial coordinates of duplex atoms in standard B-form; 2) short energy 
minimization in vacuum with distant dependent dielectric constant; 3) solvatation of the 
dna-duplex in the rectangular box with 9 Å distance from the nearest dna atom to the box 
side; 4) neutralization of the dna-duplex by Na+ ions; 5) energy minimization of water and 
ion positions until grad(E) < 0.1 kcal/mol/ Å; 6) slow heating from 1 to 300 K in 10 ps 
with the soft harmonic restraint potential (the harmonic potential constant, Kh = 0.1 
kcal/mol/ Å2) for dna-duplex atoms; 7) final equilibration during 50 ps with the soft 
harmonic restraint potential for atoms of  dna-duplex flanking base pairs; 8) productive 
molecular dynamics run of 1500 ps at T = 300K, P = 1 bar with PME for the long-range 
electrostatic forces and weak harmonic restraint potential (the harmonic potential 
constant, Kh = 0.02 kcal/mol/ Å2) for dna-duplex flanking base pair and trajectory 
collection with 1 ps interval.   

A typical fluctuation behavior of the base step helical parameters along a molecular 
dynamic trajectory of the DNA duplex are shown in Fig. 2. It can be seen that high frequency 
fluctuations (ps scale) have a large amplitude and describe a fast local conformational 
fluctuations. The average value, over the 50 ps window, shows quite smooth behavior with  a 
period of slow fluctuation of about 500–600 ps. Therefore it can be concluded that  trajectory 
of 1500 ps of length provides a reasonable amount of data to obtain an average and statistical 
fluctuation values for the helical parameters of DNA duplex.  The molecular dynamic 
simulation of 150 DNA 14-base pairs duplexes  have been performed according to described 
protocol. A series of instant structures (1 500 000 structures include 1800 pair steps) have 
been collected. The average value of helical parameters <P> and value of thermal fluctuations 
<ΔP2>1/2 at 300K have been calculated for the collected data base. The thermal fluctuation 
<ΔP2>1/2 defines a conformational rigidity (or deformability) KP = 2kT/<ΔP2> of potential 
energy profile along conformational parameter P. 
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Figure 2. Fluctuation of the helical angle Twist (TZ) for the Т4Т5 (dark) and А7А8 (grey) nucleotide 
step of the dna14-1 duplex. Thick smooth lines are the average over 50 ps window. 

RESULTS  

It have been found that statistical accuracy of about 0.25 ° for the average value of 
helical parameters of dinucleotide step XY can be achieved for averaging over ~120 
flanking sequences, Fig. 3.  

Table 1 shows results of simulation of helical parameters for  ten types of dinucleotide 
steps. It can be seen that the helical parameters for the dinucleotide XY  steps depend on 
XY context.  

DISCUSSION  

Table 1 shows that three pair steps TA, TG, CG have large average tilt angle <TY> ~ -11°, 
compare to that of - 3° for average pair step XY. Therefore a special distribution of the 
TA,TG,CG  in the DNA sequence can lead to a formations of the DNA rods macroscopically 
bended in major groove direction. The extent of fluctuations over flanking sequences consist of 
two groups, a) neighbor context sensitive four pair steps, namely TA, TG, CG, AC with large 
values of fluctuations of tilt and/or twist helical parameters ~ 5.5°, and group b) of neighbor 
context insensitive of six remaining pair steps having a value of fluctuations about 3.3°. The 
neighbor context sensitive pair steps should be analysed on the quartet level, i.e. <X1XYY1>. 

The values of thermal fluctuations (and coupled deformability) of helical parameters 
at 300K are  context insensitive. The propeller  parameter is a characteristics of one 
complementary base pair  which controls a relative positions of the DNA atoms 
donor/acceptors of H-bonds on the surface of minor/major groves. The propeller 
parameter has extreme values for AT complementary pair steps.  

It can be noticed that the average values of helical parameters in the  table 1 and  values 
extracted from the X-ray structures of  DNA duplexes (Bhattacharyya et al., 1999; 
Vorobjev, 2003) have a low correlation coefficient. As shown in Ref. (Bhattacharyya et al., 
1999), a crystal field can considerably affect the average value of helical parameters of 
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DNA duplexes. The value of  fluctuations of the helical parameters calculated on the data 
base of the X-ray crystal structures is probably insensitive on crystal field effects. As found 
in Ref. (Vorobjev, 2003) on the set of  DNA duplex crystal consisted of 644 dinucleotide 
pair step, the larges fluctuations has the  tilt parameter of pair steps  TA, TG, CG, GC, AC 
in a good agreement with results of  the presented modeling. 

 

 

Figure 3. Dependence of average value of helical parameters twist and roll on the number of flanking 
sequences for the AA step. 

Table 1. Equilibrium helical parameters and their thermal fluctuations over MD trajectory for ten 
dinucleotide steps and its average and standard deviations over flanking sequences  
n pair step 
     X-Y   
 5′-3′/5′-3′ 

 Equilibrium values                                     Thermal fluctuations 
   TX      TY      TZ      PP                        TX          TY        TZ        PP 
<<H>t>f                                                            <SD[H]t >f     
SD[<H>t]f                                                         SD[SD[H]t ]f     

1  A-A/T-T  -3.6      -2.5     35.3    -21.8                      6.4         10.2         4.7      15.4 
  1.1        3.0       2.1       4.9                      0.2           1.0         0.8        2.3 

2  A-T/A-T  -0.2        2.4     33.2    -19.8                      7.1           9.3         3.9     15.3  
  0.9        3.2       2.2       4.8                       0.2          1.2         0.9        2.1 

3  A-G/C-T  -4.8       -2.7     34.6    -15.7                       6.5        10.7        4.9       16.8 
  1.2        3.6       2.5       5.5                       0.3           1.0        1.0         1.9 

4 A-C/G-T  -2.3        1.0     33.2   -14.6                        6.9          9.8         4.6      16.6       
  1.3         5.5      3.6       6.0                        0.2          1.3         0.9       2.1 

5  T-A/T-A  -0.4     -10.2     33.7   -15.2                        6.1        11.6         6.1     17.7 
  1.3        4.9       3.8       6.1                        0.2         1.2          1.1       2.2 

6 T-G/C-A  -1.0     -11.7     33.2   -11.0                        5.9        11.5         6.4     17.8 
  1.4        5.6       4.8       6.2                        0.2          0.9         1.1       1.9 

7  T-C/G-A  -1.0       -0.6     36.8   -13.9                        6.4        10.6         5.0     17.0 
  1.7         3.3       2.1      8.4                        0.2          1.0         0.8       2.3 

8 G-G/C-C  -0.5       -2.8     34.7     -8.7                        6.2        10.7         5.4     17.7 
  1.6         3.4      2.4       6.5                        0.2          1.4         1.0      1.5 

9 G-C/G-C    0.1        3.7    36.0    -10.3                        7.1        10.2         4.9     17.9 
   2.0        2.9      2.0       5.7                        0.2          1.2         1.0       1.7 

10C-G/C-G  -0.3      -11.3   34.8      -9.5                        6.1        11.3         6.1     17.9 
  1.9         5.9      6.2       7.1                        0.4          1.1         1.5       1.6 

all average    -1.2       -3.2   34.6    -13.4                        6.5        10.6         5.2     17.0 
   1.5         4.1     3.2        6.8                        0.2          1.2         1.1       2.1 

<<H>t>f  – average Helical parameter over time snapshots for particular XY pair step of DNA duplex and 
then it are averaged over  all flanking sequences; SD[<H>t]f  – standard deviation of time average helical 
parameter over all flanking sequences; <SD[H]t >f – standard deviation over time snapshots are averaged over 
all flanking sequences, it is equal to the average value of thermal fluctuations; SD[SD[H]t ]f – standard 
deviation over all flanking sequences for  standard deviations over time snapshots. 
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SUMMARY 

Motivation: High-density microarray data can be a rich source of information and play 
a key role of understanding the etiology of complex multifactorial disease such as 
Diabetes mellitus type II (DM2). However, selection of features important for diagnostic 
and prognostic purpose out of over 22000 transcripts represented on a microarray is a 
serious challenge. Additional complication comes from the fact that features represented 
in the microarray data are not independent, but intertwined in a complex network of 
relations, which itself is a subject of research.  

Results: We have developed the algorithms of directed search GRAD and LAD. These 
algorithms allow selection of an informative subset of genes with account of their inter-
dependence. The effectiveness of these algorithms has been tested in experiments with 
selection of informative genes related to the diagnostics of DM2. We introduce a new 
method of sorting the observed molecular phenotypes of patients’ skeletal muscle on a 
scale ranging from most to least metabolically fit. The rank of a particular phenotype is 
highly correlated to the individual risk of developing DM2 and can be used for diagnostic 
and prognostic purpose.  

Availability: http://compbio.pbrc.edu/pti. 

INTRODUCTION 

Data obtained in a microarray experiment represents a coarse-grained snapshot of 
expression for thousands of genes. This “molecular fingerprint” is bound to reflect not 
only routine housekeeping activity, but also patterns specific for particular organs, tissues 
and physiological conditions, including disease state. This is particularly true in relation 
to complex metabolic diseases such as obesity and DM2, characterized by subtle change 
in expression pattern on many genes and dysregulation of whole biological pathways (see 
(Barabash, 1963; Merill, 1963; Zagoruiko, 1999) for review). However, selection of an 
informative disease-related subset of genes which could be used to detect deviation from 
the normal metabolic status in a quantitative manner presents a significant challenge for 
this class of diseases. In this paper we introduce two algorithms for feature selection 
specifically designed to account for the concerted nature of gene activity which underlies 
metabolic disorders. Algorithm GRAD takes advantage of application of collective 
deciding rules of “k nearest neighbors” type (kNN). The alternative and complementary 
algorithm LAD – draws decision from application of logical deciding rules (decision 
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trees). The performance of our algorithms is demonstrated in a case study of selecting 
gene expression signatures informative for early diagnosis of DM2. 

ALGORITHM GRAD 

First effective algorithms for selection of informative subset of dependent features has 
been proposed by T. Merill and O. Green (Merill, Green 1963). They have described the 
algorithm of backward deletion (Del). At the same year Ju. Barabash (Barabash, 1963) 
introduced a forward addition algorithm (Ad). Both algorithms belong to a class of greedy 
algorithms of unidirectional hill-climbing. On each step algorithm Del excluded the least 
important feature. Algorithm Ad works in the opposite direction: on each step the subset 
is coupled with most informative feature. Comparison of different variants of alternating 
application of Ad and Del algorithms has demonstrated the advantage of combined AdDel 
algorithm (Zagoruiko, 1999), which works as following: first n1 informative features are 
selected by Ad algorithm; then n2 of these features (n2 < n1) are discarded by Del. The 
iterations continue until the desired quality of classification is achieved. 

On each step the algorithm produced an optimal solution in a polynomial time. 
However, it does not guarantee a globally optimal solution. Such solution can be 
approached by stepwise selection of not just spare features, but “granules”, i.e. 
combinations of a few features. Our experiments demonstrate that if all features are 
arranged by descending order of individual importance the probability of a particular 
feature to land in an informative subset quickly drops with its increase of its rank. Thus, 
most informative combinations of features are likely to be found among features with 
most individual importance.  

The new algorithm GRAD («GRanulated AdDel») developed by our group begins with 
selection of N<N* most informative features (i.e. power 1 granules) out of original set N*. 
Out of these features we form all combinations of 2 and 3 features (i.e. power 2 and power 3 
granules) and then select N* most informative power 2 and N* most informative power 3 
granules. The power order of granules is limited by computational resources and can be scaled 
up if required by particular research project. On the second step the list of 3N* granules is 
pipelined into input stream of AdDel algorithm. Starting the algorithm from different elements 
of this list generates different informative subsystems. Deciding rules of kNN type weight all 
features in proportion to the number of occurrences in the given subsystem.  

ALGORITHM LAD 

Logical decision trees are grown “down from the top”. Recognizing two patterns we 
select the feature separating patterns with the least number of mistakes. Than we select 
the best-separating feature in each group of patterns (objects). The process continues until 
the desired quality of separation or maximum allowed order of tree branching is reached. 
This procedure of gradual adding the “best” features is similar to one used in Ad 
algorithm. Introduction of a complementary deletion technique similar to Del is a logical 
step in algorithm development.  

Resulting algorithm LAD begins with construction of N1 trees of depth 2, where first 
leafs are N1 most informative features. Among the trees we select one generating the least 
number of mistakes. Then we fixate the leaf of the tree and construct a set of trees of 
depth 3, where N2 most informative features are used for the nodes of the next level. We 
select the tree producing least recognition mistakes on depth 3. The process continues on 
level 4 and beyond until the algorithm stops. 
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RESULTS AND DISCUSSION  

In this study we used the data previously published by Mootha et al. (2003). The data 
consists of 43 skeletal muscles samples from 43 age-matched male patients divided on 
three groups: NGT (normoglycemic), DM2 (diabetes mellitus type II) and IGT (insulin-
impaired intermediate group). The microarray expression data contains expression 
measurement for 22365 genes for each sample. Preliminary analysis revealed 5527 genes 
expressed above the background noise level among at least one of 43 patients. We 
conducted comparative analysis of algorithms GRAD, AdDel and Exhausting Search (ES) 
applied for recognition of two classes: NGT (17 patients) and DM2 (18 patients) using the 
rule kNN (k = 1) in leave-one-out regime. Diagnoses were made with the help of 
“function of membership” F = 1–2r1/(r1+r2), r1 and r2 – distances from a control point up 
to the nearest neighbors of the first and second pattern, accordingly. The estimation of 
informativity of attribute subsystems was made on training set by a method "One-Leave-
Out": each of 35 patients was by turns compared to all other patients. Got out on one 
nearest neighbor of each of two patterns. On distances up to them r1 and r2 value F was 
calculated. If F > = 1 the decision was accepted in the benefit of the first pattern and if  
F <0 – for the benefit of the second.  

This method of decision-making at use of all of 5527 attributes has correctly 
distinguished 20 objects from 35. Recognition to 200 attributes having maximal 
individual informativity, has lowered number of mistakes up to 9. Algorithm GRAD has 
chosen some tens the subsystems consisting of 3 and 4 attributes on which correct 
recognition of all of 35 objects turns out.  

Averaging the “function of membership” for each patient among different feature 
subsystems can be used to sort all patients along the line drawn between most and least 
metabolically fit phenotypes. The results of this ranking of 43 patients on 50 most 
informative feature subsystems are remarkably consistent with the clinical diagnosis as 
depicted on Fig. 1.  

Here vertical lines separate three classes as they are defined by clinical diagnosis 
(NGT, IGT and DM2). It is necessary to emphasize, that all samples from the 
intermediate group are found in the center between NGT and DM2 classes even though 
they were not employed in the training set.  

Using LAD algorithm we have found some trees of depth <4 which distinguish two 
patterns without mistakes, including one tree of depth 2. Its structure included the following 
two genes: 220547_s_at (gb:NM_019054.1 /DEF=Homo sapiens hypothetical protein 
MGC5560 (MGC5560), mRNA. /FEA=mRNA /GEN=MGC5560 /PROD=hypothetical 
protein MGC5560 /DB_XREF=gi:12963480 /UG=Hs.233150 hypothetical protein 
MGC5560 /FL=gb:NM_019054.1) and 218034_at (gb:NM_016068.1 /DEF=Homo 
sapiens CGI-135 protein (LOC51024), mRNA. /FEA=mRNA /GEN=LOC51024 
/PROD=CGI-135 protein /DB_XREF=gi:7705631 /UG=Hs.84344 CGI-135 protein 
/FL=gb:BC003540.1 gb:AF151893.1 gb:NM_016068.1).  

It is necessary to mean, that because of very small quantity of objects the received 
results have low statistical reliability. 

Complexity of the first stage when algorithms choose a subset from N* most 
individually informative attributes, linearly depends on N. Complexities of formation of 
granules of capacity 2 and 3 are proportional to a square and a cube of N *, accordingly. 
Stages of application of algorithm AdDel and algorithm of escalating of a tree have 
polynomial complexity. Complexity of algorithms depends on quantity M of objects is 
linearly. Hence, essential restrictions on sizes of data table are not present. 
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Figure 1. Ranging of patients’ microarray phenotypes on the scale from least to most metabolically fit. 

  

CONCLUSION 

Algorithms GRAD and LAD are highly effective in selection of subset of informative 
features in the original data set of extremely high dimensionality. Ranking patients’ 
molecular phenotypes by the unified index can provide important tool for early 
diagnostics and risk personalized risk estimation of complex multifactorial diseases such 
as metabolic syndrome and type II diabetes.  
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SUMMARY 

Motivation: The contact number profile contains important information about residue 
interactions and, hence, it can be helpful in prediction of the spatial structure of the protein. 
The residue contact numbers are traditionally interpreted as measure of its solvent exposure.  

Results: Here, we propose a neural network regression approach to the prediction of 
the number of residue contacts of short- and full-range types. Pearson’s r between the 
actual and predicted contact numbers varied from 0.531–0.705 for the full-range contacts 
and they were consistently higher (0.669–0.768) for short-range contacts for all the 
distance cut-offs at 6,8,10 and 12 Å. 

Availability: The program of the contact number prediction CONNP is available at 
http://wwwmgs2.bionet.nsc.ru/reloaded/. 

INTRODUCTION 

Residue contact number in a protein is defined by the number of residues at a specified 
distance around the given residue and closely related to its accessible surface area (Nishikawa, 
Ooi, 1980; Rodionov et al., 1981; Rost, Sander, 1994). Therefore, information about contact 
numbers can obviously be advantageously used in estimation of residue solvent accessibility 
in fold recognition problems (Nishikawa, Matsuo, 1993). This information has been also 
utilized for the prediction of protein contact maps (Fariselli et al., 2001). The predictions of 
contact number rely on the classification and regression approaches. Classification approaches 
predict the residue state, for example, two state classification with respect to the contact 
number mean value (Fariselli, Casadio, 2000; Pollastri et al., 2002). Regression allows to 
predict the real value of contact number and proved to be more informative (Kinjo et al., 2005; 
Yuan, 2005; Kinjo, Nishikawa, 2005).  

Here, we propose a regression method that uses neural network ensemble for the 
prediction of contact numbers of both types. Current approach is further development of 
previously reported work (Afonnikov, 2006) and is extended by using averaging over a 
set of several neural networks predictions. The algorithm is implemented in the CONNP 
(CONtact Number Prediction) program available through the Internet.  
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SYSTEM AND METHODS 

Two residues of a protein are in contact, if the distance between their Cα atoms does 
not trespass the dc threshold (Pollastri et al., 2002). In this work we use dc at the 6, 8, 10, 
and 12 Å distances. Additionally, for each residue i, we partition protein globule. The first 
part consists of the residues nearby in the polypeptide chain. They define short-range 
interactions and are separated in the primary structure from the i-th residue by not more 
than 7 positions. The second part is comprised of other residues and defines long-range 
interactions. Here, we define contact numbers for the full-, long-, and short-range 
contacts, cnf(i), cnl(i), and cns(i), respectively. It is clear that cnf(i) = cnl(i)+cns(i). 
Therefore, we predict full- and short-range contact numbers. To train the neural network, 
high resolution monomeric protein structures from the PDB database (release 109, 
January, 2005; Berman et al., 2000) were extracted. The structures do not contain 
domains with the same folding type according to the SCOP classification (Andreeva et 
al., 2004). The total number of the full-size monomeric chains that shared no common 
domains of the same folding type was 339. The chains were divided into 3 samples (a, b, 
and c), consisting of 113 chains each, with approximately the same number of residues. 
The neural networks were trained, tested and validated on this abc dataset. For the 
additional test, we selected those protein structures that were supplemented to the PDB 
database in 2005, i.e. later than the proteins included in the training sample. We chose the 
fully resolved structures with a value of pairwise sequence similarity < 25 % between 
each other and with those of the abc dataset; 408 sequences in all (2005 dataset). 

ALGORITHM 

To predict contact numbers, a set of fed-forward neural networks of the first (NN1) and 
the second (NN2) levels was used. Networks at the same level had input data of the same 
type. All the networks had a topology with a single hidden layer and sigmoidal normalized 
exponential transfer functions. Fig. 1а shows the structure of the NN1. The NN1 predicts 
the contact number on the basis of the PSSM data. The PSSM matrix is built on the basis of 
the PSI-BLAST multiple alignment program, 3 iterations with default parameters (Altschul 
et al., 1997). The NN1 comprised a single hidden layer and a single neuron at the output 
layer. To optimize the NN1 parameters, the mean absolute deviation error (MAE) was used: 
MAE = (1/N)·Σ|cn0(i) – cn(i)|, where N is the test sample size, cn0(i) is the observed contact 
number, and cn(i) is the predicted contact number for the residue i. We used the abс dataset 
described above for the training/test/validation cycles, i.e. every one of the samples was 
trained/tested/validated in different combinations with other two samples. Four NN1 
networks were built for each combination. The networks had a hidden layer with 20, 40, 60, 
and 80 neurons; then, the output of 4 networks were arithmetically averaged. The average 
was the result of the NN1 for each data combination. 

The NN2 was arranged as shown in Fig. 1b. The input data resulted from the NN1. 
For the i-th residue, a sliding window of 41 positions in length was considered. 
Predictions were made for the central residue in the window. The input data vector was 
composed of 41 contact number values predicted by the NN1. For the N- and C- residues, 
the parameter values in the sequence range were taken as -1. All the NN2 contained a 
single hidden layer with 20 neurons. Like in the NN1, there was a single value at the 
output, namely the contact number value for the i-th residue. The training procedure was 
the same as for the NN1 networks.  

Fig. 1c is a general layout of the neural network ensemble for the prediction of the real 
values of the contact number. The parameters for the NN1 with different neuron numbers 
in the hidden layer were obtained for the training/test/validation data sets (abc, acb, bac, 
bca, cab, cba), 4 × 6 = 24 networks of the NN1 were built. Six NN2 networks were built 
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for each data set combination. The final prediction was the averaging of the predictions 
for 6 NN2 and rounding of the value to the nearest integer. Thus, the structure of the 
predictor ensemble architecture is comprised of 30 neural networks for each contact 
distance and contact type. The total number of built predictors was 8. 

 

Figure 1. The neural network ensemble for the prediction of the real values of the contact numbers:  
а – the neural network at the first level (NN1) uses PSSM and Information weights yielded by the 
BLAST program as input data; b – the neural network at the second level (NN2) uses the NN1 
predictions as input parameters; с – the overall ensemble structure that uses the averaged predictions of 
the neural networks (the designation of the neural network NNL_xyz_K in the figure corresponds to the 
network at the L level, to the xyz set of the training/test/validation data, and the number of K units in the 
hidden layer of the network). For detailed description, see text. 

RESULTS AND DISCUSSION 

The accuracy for the contact number prediction was estimated on the 2005 dataset 
(Table 1). It is evident that on average, short-range contact numbers predicted with higher 
accuracy compared with full-range contact numbers. For the full-range contact numbers 
the performance of our program is comparable with that reported by SVM regression 
method for the prediction of the Cβ-Cβ distance discrete contact number (r = 0.64, 0.66, 
and 0.69 for dc = 8, 10, and 12 Å, respectively, in the case when the PSSM matrix was 
used as input data) (Yuan, 2005). We also performed the residue classification based on 
the contact number predicted by the current method and estimated the performance of 
classification approach as the fraction of residues classified correctly Q2. For the contact 
distances of 6, 8, 10, and 12 Å we obtained Q2 values 0.726, 0.736, 0.753 and 0.766 
respectively. These values slightly outperforms previously reported 0.7324 (6 Å), 0.7095 
(8 Å), 0.7213 (10 Å) and 0.7409 (12 Å) (Pollastri et al., 2002).  

Thus, the CONNP program can be used in the prediction of contact numbers as 
additional source of information and can be applied with the results of other methods to 
obtain better contact number estimates. 
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Table 1.  CONNP Performance on the 2005 dataset. The contact number of type t and distance d will be 
denoted cntd 
Contact number MAEa rb DevAc 
cnf6 1.073 0.531 0.848 
cnf8 1.750 0.628 0.780 
cnf10 3.350 0.667 0.750 
cnf12 5.578 0.705 0.720 
cns6  0.891 0.718 0.698 
cns8 0.995 0.669 0.746 
cns10 1.288 0.713 0.702 
cns12 1.242 0.768 0.641 

a Mean absolute error. b Pearson’s r. c Absolute deviation (Kinjo et al., 2005). 

ACKNOWLEDGEMENTS 

The authors are grateful to Lokhova I.V. for technical assistance. The work is 
supported by the U.S. Civilian Research & Development Foundation for the Independent 
States of the Former Soviet Union (CRDF) within the Basic Research and Higher 
Education Program (Y1-B-08-20), the Ministry of Education of the Russian Federation 
grant РНП.2.1.1.4935, Russian Foundation of the Basic Research (05-04-49141-а, 05-07-
98012-р), SB RAS integration projects 49 and 115, Innovation project of Federal Agency 
of Science and innovation IT-CP.5/001. 

REFERENCES 

Afonnikov D.A. (2006) Prediction of contact numbers of amino acid residues using a neural network 
model. In Kolchanov N., Hofestaedt R., (eds), Bioinformatics of Genome Regulation and Structure II. 
Springer Science+Business Media, Inc. 2006, pp. 297–304. 

Altschul S.F., Madden T.L., Schaffer AA., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997) Gapped BLAST 
and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res., 25, 3389–3402. 

Andreeva A., Howorth D., Brenner S.E., Hubbard T.J., Chothia C., Murzin A.G. (2004) SCOP database 
in 2004: refinements integrate structure and sequence family data. Nucl. Acids Res., 32, D226–D229. 

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. 
(2000) The protein data bank. Nucl. Acids Res., 28, 235–242. 

Fariselli P., Casadio R. (2000) Prediction of the number of residue contacts in proteins. Proc. Int. Conf. 
Intell. Syst. Mol. Biol., 8, 146–151. 

Fariselli P., Olmea O., Valencia A., Casadio R. (2001) Progress in predicting inter-residue contacts of 
proteins with neural networks and correlated mutations, Proteins, 45 (Suppl 5), 157–162. 

Kinjo A.R., Horimoto K., Nishikawa K. (2005) Predicting absolute contact numbers of native protein 
structure from amino acid sequence. Proteins, 58, 158–165. 

Kinjo A.R., Nishikawa K. (2005) Predicting secondary structures, contact numbers, and residue-wise 
contact orders of native protein structures from amino acid sequences using critical random networks. 
Biophysics, 1, 67–74. 

Nishikawa K., Ooi T. (1980) Prediction of the surface-interior diagram of globular proteins by an 
empirical method. Int. J. Pept. Protein. Res., 16, 19–32. 

Nishikawa K., Matsuo Y. (1993) Development of pseudoenergy potentials for assessing protein 3-D-1-D 
compatibility and detecting weak homologies. Protein Eng., 6, 811–820. 

Pollastri G., Baldi P., Fariselli P., Casadio R. (2002) Prediction of coordination number and relative 
solvent accessibility in proteins. Proteins, 47, 142–153. 

Rodionov M.A., Galaktionov S.G., Akhrem A.A. (1981) Prediction of the degree of exposure of amino 
acid residues in globular proteins. Dokl. Akad. Nauk SSSR, 261, 756–759. 

Rost B., Sander C. (1994) Conservation and prediction of solvent accessibility in protein families. 
Proteins, 20, 216–226. 

Yuan Z. (2005) Better prediction of protein contact number using a support vector regression analysis of 
amino acid sequence. BMC Bioinformatics, 6, 248. 



Computational structural and functional proteomics 223
 
Chapter # 

A TOOL FOR COMPARATIVE ANALYSIS  
OF SOLVENT MOLECULES IN PDB STRUCTURES 

Aksianov E. *1, 2, Zanegina O.3, Alexeevski A.2, Karyagina A.4, 5, Spirin S.2 
1 Virology department, Biological faculty, Moscow State University, Moscow, Russia; 2 Belozersky 
Institute, Moscow State University, Moscow, Russia; 3 Bioengineering and Bioinformatics faculty, 
Moscow State University, Moscow, Russia; 4 N.F. Gamaleya Research Institute of Epidemiology and 
Microbiology, Moscow, Russia; 5 Institute of Agricultural Biotechnology, Moscow, Russia 
* Corresponding author: e-mail: evaksianov@belozersky.msu.ru 

Key words:  structural water molecule, hydrogen bond, comparative analysis of related structures 

SUMMARY 

Motivation: Water molecules immobilized on the protein or DNA surface are known 
to play an important role in the inter-molecular contacts, protein-protein or protein-DNA 
complexes stabilization. Comparative analysis of related 3D structures allows to predict 
locations of such water molecules on intermolecular interface.  

Results: We have developed and implemented the algorithm wLake detecting 
“conserved” water molecules i.e. those located in almost the same positions in a set of 
superimposed structures of related proteins or macromolecular complexes. The water 
molecules of different complexes are represented as vertexes of a certain graph and the 
conserved molecules correspond to maximal cliques in the graph. wLake was used to 
analyze water molecules in several structurally characterized protein families. Despite of 
exponential algorithm complexity, the program works appropriately fast for dozens of 
superimposed structures. 

Availability: http://monkey.belozersky.msu.ru/.  

INTRODUCTION 

Water molecules immobilized on a protein surface or on an interface of two 
macromolecules play an important role in intermolecular (protein-protein, protein-DNA 
etc.) interactions and macromolecular complexes stabilization. Protein Data Bank entries 
obtained by X-ray diffraction with resolution better than 2.5 Å typically report the 
coordinates of a number of water molecules. The availability of 3D structures of 
homologous proteins provides a possibility to select those water molecules that are 
located in the same positions and form the same hydrogen bonds. It could be supposed 
that those molecules, referred as structural water molecules (SWMs), correspond to 
hydration sites on protein or nucleic acid surfaces in solution. This approach was explored 
in a growing number of studies devoted to protein-DNA interactions (see, for example, 
Karyagina et al., 2005), formation of protein oligomers (Bella et al., 1995) and protein-
substrate complexes (Ogata, Wodak, 2002).  

We present here an automatic tool (named wLake) finding structural water molecules 
in superimposed 3D structures; unlike other analogous tools, e.g. Sanschagrin, Kuhn 
(1998), our tool is augmented with a module estimating the reliability of obtained results.  
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METHODS AND ALGORITHMS 

Definitions. Two water molecules from different structures are called close if the 
distance between the centers of their oxygen atoms in superimposed structures is less than 
a threshold and (optionally) they form hydrogen bonds with the same amino acid residues 
and/or nucleotides. Default threshold value is 1.5 Å. A set of water molecules from 
different structures is called a cluster of water molecules if each two molecules of the  
set are close. 

Input data for identification of SWMs are superimposed 3D structures of related 
proteins or macromolecular complexes. Atoms of all structures are assumed to be 
immersed in the same coordinate frame. 

Algorithm. The goal of the algorithm is to find all maximal (i.e. non-extendable) 
clusters of more than a given number Min water molecules. At the first stage, we 
construct a graph representing the set of water molecules. A graph vertex corresponds to a 
single water molecule from any structure. Two vertices are connected by an edge if the 
respective water molecules are close and therefore belong to different structures. Thus, 
maximal clusters of waters correspond to maximal cliques in the graph (a clique is a 
subset of vertices such that any pair of vertices is connected by an edge). A simple 
algorithm is used to find all maximal cliques of more than Min vertices (see wLake 
homepage for details). Despite it has an exponential complexity, the algorithm 
demonstrated a reasonable efficiency for several dozens of superimposed structures. 

Parameters of the algorithm are (1) the distance threshold for regarding water molecules 
as close (1.5 Å by default), (2) the minimal number Min of water molecules in a cluster (3 
by default), (3) the distance threshold for a hydrogen bond length (3.5 Å by default). 

The algorithm was implemented as the wLake program available via Web interface. 
The preliminary version of the Web service can be found at http://monkey. 
belozersky.msu.ru/. 

The result of the program is a list of clusters of water molecules. To estimate the 
reliability of each detected cluster, we developed a special program WLStat. This 
program 100 times repeats the following two-step procedure. First, a “randomized PDB 
file” is generated. The file has PDB format and contains (1) the superimposed 
macromolecules from the input data and (2) water molecules with randomized 
coordinates; the number of water molecules in each of superimposed structures and the 
distribution of distances between water molecules and macromolecules are the same as in 
input data. Second, clusters of water molecules in the randomized PDB file are detected 
by wLake. This allows to approximate the distribution of cluster sizes and to assign an E-
value to each detected cluster. Clusters with small E-value (E < 0.01 by default) are 
considered as clusters of SWMs. 

wLake was used to detect clusters of SWMs in several protein families (constant 
domains of TCR, N-terminal domains of NFκB, transketolases and others). The lists of 
family representatives were obtained from SCOP database (Murzin et al., 1995). SSM 
server (Krissinel et al., 2004) was used to superimpose the structures. All detected clusters 
of SWMs were analyzed manually using RasMol program (Sayle, Milner-White, 1995). 

IMPLEMENTATION AND RESULTS 

wLake was tested on structures of homeodomain-DNA complexes. In the work of 
Karyagina et al., 2005, we have reported 8 hypothetically functionally important clusters 
of water molecules found in protein-DNA interfaces of 32 superimposed X-ray structures 
from different homeodomain subfamilies. Seven of these clusters contain water molecules 
of 11 or more structures. wLake program with the distance threshold 1.5Å, the minimal 
cluster size 10, and the E-value threshold 0.01 has detected 12 clusters of structural water 



Computational structural and functional proteomics 225
 
molecules on the protein-DNA interface of same complexes. Five of them coincide with 
those reported in (Karyagina et al., 2005). The other two clusters from (Karyagina et al., 
2005) can be easily extracted from the remaining seven clusters detected by wLake. 
Namely, the seven wLake clusters can be divided in two groups; clusters from each group 
have essential mutual intersection and no intersections with other clusters. The set of 
molecules belonging to each group coincide with one of earlier reported clusters of water 
molecules. We conclude, that wLake is appropriate for SWM detections. 

To compare our program with another water cluster detector WatCH (Sanschagrin, 
Kuhn, 1998), we tested the latter on the same set of homeodomain-DNA complexes. 
WatCH with the same distance threshold 1.5 Å detected 7 clusters on protein-DNA 
interface containing 10 or more water molecules. One WatCH cluster contains more than 
one water molecule from the same structure, which is allowed by its algorithm but seems 
to be in conflict with the purpose to find SWMs. Five clusters coincided with those 
reported in the work Karyagina et al. (2005). The remaining cluster is a part of a cluster 
reported in the cited work and detected by wLake. 

Analysis of differences in the results of two programs showed that the clustering 
algorithm of WatCH can divide big and compact clusters of waters into smaller parts, 
which is not the case of wLake. Probably, the biggest clusters of water molecules are 
more adequate solutions of the problem. wLake detects maximal but sometimes 
intersecting clusters of SWMs. Intersecting clusters should be considered by an expert. 
and merged if necessary. To facilitate the analysis, wLake generates a RasMol script for 
visualization detected clusters of SWMs. 

We have also implemented wLake to analyze immunoglobulin-like beta-sandwich 
domain of Escherichia coli thiol-disulfide interchange protein. One of its strand-like 
segments in a beta sheet is not connected with the neighboring strand with hydrogen 
bonds. To explain the stability of this segment, we have detected SWMs in 6 X-ray 
structures of the protein. Using wLake, 6 clusters of SWMs forming water bridges 
between the segment and the neighboring beta-strand were detected. The found SWMs 
can explain the unusual for the immunoglobulin fold feature (Fig. 1). wLake program 
was used to detect SWMs in structures of transketolases from S. cerevisiae, E. coli, Zea 
mayse and Leishmania mexicana. Eight structures (two subunits from each homodimer) 
were superimposed. We have detected 27 clusters of SWMs containing 8 water molecules 
(one molecule from every structure) were detected. The SWMs will be taken into account 
in homology modeling of the human transketolase TKTL1. 

 

Figure 1. Water-mediated contacts between the loop 55–63 and the beta-strand 80 87 in 1L6P. 
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DISCUSSION 

It is a common observation that many water molecules reported in X-ray solved 
structures are not hydrogen bonded to proteins, nucleic acids, ligands or other water 
molecules. The majority of such molecules seems be artifacts of the method; the same 
could be true even for some water molecules bound with protein and/or nucleic acids. We 
have postulated that water molecules, bound with protein and/or nucleic acid and detected 
practically at the same position in several related structures, SWMs, are more reliable 
than other water molecules; they can be functionally important. For example, they can 
play an important role in intermolecular interaction. We believe that those molecules 
correspond to structural water molecules in solution, which occupy hydration sites for a 
relatively long time. Interfacial SWMs should be taken into account in studies of protein-
DNA and protein-ligand interactions, and in drug-design studies.  

wLake, a special tool for automatic detection of SWM clusters in a set of related 
superimposed 3D structures, was developed and tested. It is equipped with a module 
WLStat which estimates the reliability of SWM clusters. These tools facilitate and 
standardize the procedure of SWM finding.  
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SUMMARY 

Motivation: Analysis of the tertiary structure of proteins is a key approach to the study 
of their functions. An important aspect in the detection of novel regulatory mechanisms in 
the gene networks is the recognition of the protein-protein interaction sites in the spatial 
structures of the transcriptional factors and analysis of the effects of mutations on the 
physical properties of their molecules. 

Result: The tertiary structure of the PPAR and RXR transcriptional factors were 
studied using the method of functional site recognition and also the method estimating the 
effect of mutations on the thermodynamic stability of protein structure. The potential 
interactions of the PPARs and RXRs molecules with other proteins were detected using 
the PDBSiteScan method. To estimate the effect of mutations associated with the 
development of human diseases on the thermodynamic stability of the PPARs tertiary 
structure, we applied the modified KRAB method. 

INTRODUCTION 

The PPAR and RXR transcriptional factors play an important role in the regulation of 
energy metabolism in humans and animals. Forming a heterodimer, they bind to the sites 
on DNA in the promoter gene regions and regulate their expression. The activity of the 
PPAR/RXR heterodimer is modulated by the interaction of its components with various 
molecules: low molecular weight ligands (fatty acids, eicosanoids, fibrates, to name a 
few), and also proteins: coactivators and corepressors. The PPAR/RXR heterodimer is 
also subject to phosphorylation. Search and detection of new PPAR and RXR binding 
sites to other proteins would hopefully disclose novel regulatory processes of energy 
metabolism. There are data in the literature indicating that physiological disorders are 
associated with point mutations in the PPARs genes. Such mutations not only disrupt the 
structure of the functional protein domains, they can destabilize a protein within the cell. 
Analysis of changes in the thermodynamic stability of PPARs molecule upon the rise of 
point mutation would give clues to the possible causes of mutation-associated diseases. 

METHODS AND ALGORITHMS 

The tertiary structures of the PPARs and RXRs factors were retrieved from the PDB 
database. The full-size sequences of the PPARs and RXRs are 468 (PPARα), 441 
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(PPARδ), 505 (PPARγ), 462 (RXRα) and 533 (RXRβ) amino acids. The tertiary 
structures stored in the PDB database contain only fragments of full-size sequences 
corresponding to the ligand-binding domain. For analysis, we chose 10 PPAR and RXR 
human structures (PDB ID: 1i7g, 1k7l (PPARα); 1y0s, 1gwx (PPARβ(δ)); 1i7i, 1wm0; 
1fm6 (PPARγ); 1dkf (RXRα); 1h9u, 1uhl (RXRβ)).  

The tertiary PPAR and RXR structures were tested for the presence of potential sites 
for protein-protein interactions using the PDBSiteScan algorithm (Ivanisenko et al., 
2004). The algorithm is based on the alignment of the examined tertiary protein structures 
with known binding sites collected in the PDBSite database (Ivanisenko et al., 2005a). 
Our search was focused only on the sites for protein interactions whose maximum 
deviation of protein structure from the known site structure (max. dist) was not greater 
than 4 Ǻ. The models for the protein-protein interactions were visualized using the 
ViewerLite program that makes possible the representation of text descriptions of the 
spatial structures of the molecules as 3d models.  

For analysis of the effect of point mutations on the thermodynamic stability of the 
PPARs tertiary structure, we utilized a modification of the KRAB method (Ivanisenko, 
2005b). Under study were the following mutations: Val227Ala (PPARα) (Yamakawa-
Kobayashi et al., 2002), Pro467Leu, Val290Met (Barroso et al., 1999), Phe388Leu 
(Hegele et al., 2002), Arg425Cys (PPARγ) (Agarwal, Garg, 2002). 

RESULTS AND DISCUSSION 

Potential sites for protein-protein interactions in the PPARs and RXRs 
molecules. Using the PDBSiteScan program, we detected sites for protein-protein 
interactions and built molecular complexes for three human PPAR isotypes and two RXR 
isotypes. In the case when the maximum deviation was less than 4Å, the number of 
predicted proteins was 51 for PPARα, 40 for PPARβ, 46 for PPARγ, 49 for RXRα  and 37 
for RXRβ. Three interactions (RXRα – annexin II, RXRα – tyrosine-kinase p56-lck, 
PPARα – histone H4) of particular interest are depicted in Fig. 1. Annexin II is a calcium-
dependent phospholipid-binding protein of the cell membrane (Deora et al., 2004). What 
may be the biological significance of the RXRα – annexin II interaction we predicted 
(Fig. 1a)? The question remains open. Answers might help to establish new functions of 
the RXRα transcriptional factor.  

The potential capacity of the RXRα – tyrosine-kinase p56-lck complex (Fig. 1b) is 
consistent with the data indicating that the RXRα molecule is subject to phosphorylation. 
It is now known that the modulator RXRα domain contains 3 sites for the phosphorylation 
by MAP kinases. The phosphorylation degree may affect transcriptional activity of 
RXRα, and also its stability in the cell (Gianni et al., 2003).  

The detected potential capacity of the protein-protein PPARα – histone H4 
interaction (Fig. 1c) suggests the existence of the following regulatory mechanism for 
gene expression: 1) In the DNA with loose nucleotide packing, histone H4 molecules 
can bind with low affinity to PPARα resulting in PPARs accumulation nearby DNA; 2) 
the low affinity PPARα – histone H4 interaction allows PPARα in complex with RXR 
to move along DNA as a result of skipping over from one histone to another that 
hastens the recognition of the binding sites on DNA. The mechanism appears feasible 
when taking into account the fact that the regions that contain PPARα binding sites 
have a high potential for nucleosome formation (Levitsky et al., 2004). We further 
intend to analyze in more detail the PPARα – histone H4 binding mechanism relying on 
modeling of molecular dynamics. 
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Figure 1. The potential protein-protein complexes. a – the RXRα – annexin II complex; b – the RXRα – 
tyrosine-kinase p56-lck complex; c – the PPARα – histone H4 complex. The PPARα and RXRα is a dark 
surface; annexin II, histone H4, tyrosine-kinase p56 lck is a light surface. 

Effect of mutations on the stability of the PPAR molecules. The effect of the 
mutations on the thermodynamic stability of the PPARs tertiary structure was studied 
using the modified KRAB method (Ivanisenko et al., 2005b). It was found that mutations 
at position 227 in PPARα and at positions 290, 388, and 425 in PPARγ produce a 
decrease in thermodynamic stability. Mutations in the PPARγ molecule at position 467 
are without effect on thermodynamic stability.  

Table 1. Physiological disorders in humans associated with point mutations in the PPARs genes. Effect 
of point mutations on the thermodynamic stability of PPAR molecules  

Gene Mutation Effect of mutation  
at the molecular level 

Population effect  
of mutations 

Mutation effect on 
thermodynamic 

stability 
PPARα Val227Ala Mutation between DNA 

binding and ligand-
binding domain  

Carriers of the Ala227 
allele had a lower total 
cholesterol level in 
plasma. A particularly 
strong association was 
established for women 
older 45. 

Decrease in TS 

PPARγ Pro467Leu, 
Val290Met 

Mutation in the ligand 
binding domain 

Not sensitive to insulin, 
type 2 diabetes, 
hypertension. 

Mutation at: 
290 decrease in TS 
467 don’t affect TS 

PPARγ Phe388Leu Mutation in the eighth 
helix of the ligand-
binding domain. 

Lipodistrophy 
(hereditary partial 
lipodistrophy) 

Decrease in TS  

PPARγ Arg425Cys Mutation in the loop 
between the helixes 9 
and 10 of the ligand-
binding domain. 

Partial hereditary 
lipodistrophy.  

Decrease in TS  
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The current results indicate that the mutations described in the literature reduce the 
stability of the PPAR molecules and, accordingly, accelerate PPARs decay in the 
proteosomes. Possibly, increase in the decay rate of the PPAR molecules, along with 
impairment of the structures of their functional domains, contribute to the development of 
the above listed human diseases. 
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SUMMARY 

Motivation: Hemolysin II (HlyII) is one of several cytolytic proteins produced by 
Bacillus cereus, an opportunistic human pathogen. This toxin is secreted in a soluble form 
and cause its cytolytic effect by assembling into transmembrane pores. HlyII is proposed 
to be an important factor of B.cereus pathogenity and adaptivity.  

Results: We have built the homology model of the HlyII heptameric ionic channel. 
The model lacks the C-terminal domain of HlyII. Using de novo modeling, we have 
proposed a possible structure of the C-terminal domain. Alternative 6-meric and 8-meric 
structures of HlyII ionic channel were built with symmetric multimer docking technique. 
Analyses of the models helped to explane some experimental results and plan further 
experimental work. 

INTRODUCTION 

Bacillus cereus is an opportunistic human pathogen well known as a food and a 
cosmetic pollutant and was found to be infectious agent of endophtalmitis, food poisoning 
sometimes lethal and wound defeats (Granum, 1997). Closely related microorganisms of 
B.cereus group (B. cereus, B. thuriengiensis and B. anthracis) produce wide spectrum of 
toxins and demonstrate distinct pathogenic properties. The mechanisms, including 
pathogenicity, that make these bacteria so adaptive to the different ecological niches are 
not fully understood. 

One of several cytolytic proteins produced by B. cereus is hemolysin II (HlyII). Based 
on its amino acid sequence, HlyII is a member of the family of oligomeric β-barrel 
channel-forming toxins (β-PFT). The most studied representative of the family is S. 
aureus α-hemolysin (αHL), which is major factor of pathogenicity of the microorganism. 
Its cytotoxic, biochemical and pore-forming properties are studied in the deep details and 
mediated by the formation of heptameric channels. The primary mechanism of cell 
damage is leakage of ions, water and small molecular weight molecules. The high 
resolution X-ray structure of the αHL heptameric assembly was determined (Song et al., 
1996). Properties of HlyII and αHL ionic channels are quite differ (Miles et al., 2002). 
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METHODS AND ALGORITHMS 

We used MUSCLE (Edgar, 2004) for multiple alignment of all homological sequences 
found by BLAST and determined highly conserved residues before homology modeling.   

The only appropriate template for the HlyII heptamer in PDB databank is the structure 
of the α-hemolysin from S. aureus, 7AHL (Song et al., 1996). About 100 residues at C-
terminal part of HlyII are absent in 7AHL and cannot be modeled using direct homology 
modeling approach. Several alternative alignments of HlyII without C-term vs. 7AHL 
were made. Frankenstein server (Kosinski et al., 2005) was used to generate the optimal 
model of the heptamer.  

The C-terminal domain of HlyII was modeled de novo with Rosetta (Bonneau, 2001) 
program, because fold prediction metaserver GeneSilico Metaserver (Kurowski, 2003) 
showed no suitable template for this domain. About 5 % of 5000 generated decoys were 
clustered in the biggest cluster, which corresponds to moderate confidence level. The 
search of 3D-structural homologs for the de novo modeled C-terminal domain was 
performed using FATCAT server (Ye et al., 2004). The structure of E. coli CyaY protein, 
1EW4 (Cho et al., 2000), belonged to the frataxin family, was found appropriative to 
build the homology model with Modeller8v0 (Sali et al., 1993).  

Hexameric and octameric forms of ionic channel were built with M-ZDOCK (Pierce 
et al, 2005) program of symmetrical protein docking. The monomeric structure was taken 
from the previously built heptameric model. Stem domain and the other part of HlyII 
were docked separately, and their spatial superposition was used as a template for 
homology modeling with Modeller8v0 (Sali et al., 1993). 

IMPLEMENTATION AND RESULTS  

The HlyII protein sequence (excluding 94 C-terminal amino acids) has enough degree 
of similarity with sequence of αHL for homology modeling (31 % identity, 60 % 
positives). The modelled heptameric complex of HlyII has a mushroom shape and 
comprises the cap domain, the stem domain and seven rim domains. The oligomer 
measures about 10 nm in diameter, 10 nm in height and pore diameter is varied from 1 to 
4 nm along the channel length. The diameter of the heptameric HlyII pore is around 2 nm 
at the entrance, maximal – 4 nm inside the cap, 1.2 nm – at the beginning of the 
transmembrane stem and from 1 nm to 1.6 nm along the rest of the stem. Narrowest 
diameters highly depend on positions of long sidechains of charged residues inside the 
pore and, as a result, can vary at different conditions. 

The stem region of HlyII contains more charged amino acid groups inside than the 
same region of αHL. There are four belts of charged residues on the interior surface of the 
stem domain of HlyII, and only two belts in the corresponded surface of αHL. In contrast 
to αHL, there are no solvent-exposed hydrophobic residues on the interior surface of the 
pore. Also, αHL has seven small side holes in the stem, they are connected by H144 
residues surrounding the stem and proposed to comprise the pH sensor that gates 
conductance of the αHL. The corresponding residue in the HlyII structure is E141 and the 
small holes are preserved in the model structure.  

Residues involved in monomer-monomer interactions are not conserved well in the 
primary protein structures of two hemolysins. Probably, predominantly backbone-
backbone type of interactions between the subunits in the pore, as well as absence of strict 
geometric limitations for this type of interactions lead to the spreading of neutral amino 
acids substitutions after gene divergence. In contrast, part of the HlyII rim domain (176–
197, 250–259 аа), probably interacting with membrane, has the highest identity with the 
template sequence. 
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The diameters of the stem domains of HlyII 6-, 7- and 8-mers measured as Cα-Cα 
distances are 2, 2.6 and 3.2 nm, respectively. The models of 6- and 8-mers have no clashs 
or other structural problems. 

The C-terminal domain most likely lies outside the pore. For this domain we propose 
α+β frataxin-like fold. We did not make any assumptions about the possible function of 
the C-terminal domain and used only the aminoacid sequence and de novo models for the 
template choise.   

DISCUSSION 

The overall structure of HlyII 7-mer is very similar to the structure of  αHL, but some 
important distinctions were found. It can explane known differences in properties of HlyII 
ionic channel in compare with αHL one.  

It is still have to be proved if HlyII can really form heterogenious channels, but some 
experimental observations support this theory. Using these models, it is possible to 
estimate single-channel conductances of 6- and 8-meric channels and compare it with 
experimental results. 

Frataxin-like fold for the C-terminal domain seems to agree with experimental data, 
since expression of HlyII is regulated by iron. This type of regulation is typical for 
proteins which involved in iron metabolism. Frataxin proteins play important role in the 
iron uptake in both prokaryotes and eukaryotes by binding and retaining iron ions with 
use of negatively charged surface islands. Existence of iron-binding properties of the  
C-terminal domain is questionable, because despite of possible fold similarity, the patches 
of negatively charged amino acids on the protein surface are not pronounced, and acid 
residues are seem to be replaced by neutral or positive charged ones. However, the 
possibility that the small negatively charged islands, found at the C-terminus, can be a 
part of bacterial iron uptake system should be checked experimentally. 

HlyII is not only a drug target, but also a perspective scaffold for the design of novel 
ionic channels with desirable properties. HlyII modeling can help to understand the 
fundamental properties of ionic channels. 
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SUMMARY 

Motivation: Proteosomes are polyenzymatic proteolytic structures that provide the 
degradation of the bulk of cytoplasmic proteins to oligopeptides. The proteosomal genes 
in the eukaryotes all arose by duplication of a single ancestral gene encoding the 
proteosomal subunits in the bacteria. The analysis of evolutionary events after duplication 
may be useful for discovering new information about proteosomal structural and 
functional properties.  

Results: We confine our study here to the detection of the positions of the α-subunits 
whose amino acid substitutions are specific to particular subunits of the proteosomal 
alpha-rings. We detected a set of the α-subunit positions whose substitutions are specific 
to the genes that encode the various proteosomal subunits. It was demonstrated that these 
specific amino acid substitutions are the features of residues that form the subunit 
contacts in the α-ring of the proteosomes. 

Availability: The proteosomal sequences, multiple sequence alignments and 
phylogenetic tree used in analysis are available upon request. 

INTRODUCTION 

According to the current concepts, the active moiety of the proteosome (20S) results 
in self-assembly of the subunits, a ring of seven α-subunits is assembled first, then a ring 
of β-subunits is built in (Kopp et al., 1997). It has been suggested that the order of the 
subunits in the proteosomal complex is fixed, i.e. each subunit in the ring occupies strictly 
defined place. Like in the case of self-assembly the proteosome, the order is defined by 
complementary interaction of the subunits, dependent on the spatial and physicochemical 
complementarity of the interacting parts of the macromolecules. 

The evolutionary history of the α-subunit encoding genes in the eukaryotes is that 
they all arose by duplication of a single ancestral gene encoding the α-subunit in the 
bacteria (DeMartino, Slaughter, 1999); genome early during eukaryotic phylogeny. After 
duplication, as a result of a divergent evolution, each paralog gave rise to a group of 
orthologs, with each coding for 1 to 7 subunits that form the α-proteosomal ring in 
eukaryotes, including yeast and mammals (Bouzat et al., 2000). This model of evolution, 
based on the phylogenetic analysis of protein sequences, underlies the currently accepted 
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classification of the α-subunits in the paralogous groups. The model also implies that, 
after duplication, the α-subunit encoding genes kept accumulating mutations under 
selection pressure designed to maintain the stable ordering of this multi-subunit-structure 
(Nikolaev, Afonnikov, 2004). Thus, detection of such mutations and their analysis would 
give important information about how the features of this multisubunit structure might 
have formed.  

We confine our study here to the detection of the positions of the α-subunits whose 
amino acid substitutions are specific to particular subunits of the proteosomal alpha-rings. 
To this end, we used the method implemented in the SDP program (Kalinina et al., 2004). 
We detected a set of the α-subunit positions whose substitutions are specific to the genes 
that encode the various proteosomal subunits. It was demonstrated that these specific 
amino acid substitutions are the features of residues that form the subunit contacts in the 
α-ring of the proteosomes. 

MATERIALS AND METHODS 

The sequences of the 20S proteosome subunits were retrieved from the SWISS-PROT 
database (Boeckmann et al., 2003). An additional database search of homologous 
sequences was done using the BLASTP program (Altschul et al., 1997). As a result, 
additional members of the proteosomal α-subunit family were chosen.  

The CLUSTALW program (Thomson et al., 1994) was applied for the multiple 
alignment of the sequences. Analysis of the phylogenetic tree built by CLUSTALW 
program allowed us to assign the α-subunit sequences to paralogous groups. The groups 
include sequences from species exemplifying all the seven subunits types. After group 
assignment, the yielded multiple alignment was used to assess the conservation/variability 
at protein positions.  

To define the positions with the subunit-specific mutations we used the SDPPred 
program (Kalinina et al., 2004). To estimate the significance of the positions the SDPPred 
uses the mutual information values. The values express the relation between the amino 
acid type at a given position and the index of paralog group (in our case it was the subunit 
index in the proteosomal ring from A to G) calculated as 
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where ( )if x  is the occurrence rate of the amino acid x  at the position i  of the multiple 
sequence alignment, ( )f y  is the fraction of the proteins assigned to the paralog group y, 

( , )if x y  is the occurrence frequency of the amino acid type x  at the position i  of the 
proteins in the paralog group y. 

The identified positions were mapped to the proteosomal 3D structure (Unno et al., 
2002; PDB identifier 1IRU). The program iMoltalk (http://i.moltalk.org) was used to 
determine inter-subunit contact positions.  

RESULTS AND DISCUSSION 

In the course of the preliminary search, we choose 193 sequences of 35 species, of 
which 4 belonged to bacteria, 7 to archea and other to eukaryotes. Based on the surveyed 
phylogenetic tree we choose 7 paralogous groups. Each group corresponded to the 
homologs of the particular subunit of the proteosomal α-ring. This group assignment is 
based on the idea that the family genes resulted from single or series of duplications 
followed by sequence divergence. Therefore, homology among the sequence of different 
members of the family are supposed the result of sequence divergence after specific 
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events (the orthologous genes) or after the duplication of genes within an ancestral 
species (the paralogous genes) (Bouzat et al., 2000). 

A SDPPred program was used to analyze the set of aligned sequences of the α-subunit 
sequences chosen as described above. SDPPred detected 25 positions at which the amino 
acid residues were conserved among the orthologs and different among the paralogous 
groups. Using the iMoltalk program we obtained that every subunit has at least 8 contact 
positions with the other α-subunits (positions 48, 53, 54, 72, 105, 209, 215, 224 of the 
multiple sequence alignment). Obtained contact positions are shown on Fig. 1. Moreover, 
certain amino acid residues form associations with the β-subunits. Conservatism of the 
remaining positions allow us to assume their importance for formation of the spatial 
proteosome structure. Mutations at such positions can result in incorrect folding of 
subunits and disrupt proteosomal complex formation. The chi-square test was applied to 
determine the significance of the positions detected by SDPPred program and the 
structural data (Table 1). We estimated the significance between the specific fixation the 
amino acid residues with respect to the subunit index, with the involvement of such 
position in the protein-protein interface for each of the α-subunit protein chain. The 
results shows, that the significance varies between subunits approaching the 90 % 
significance level.  

The results suggested that during early phylogenesis, duplication in the subunit 
sequences was followed by mutations of residues that forms protein-protein interface and 
were important for the specific packing of subunits in the proteosomal machine.  

Table 1. List of positions assigned as specificity-determining by SDPPred program and amino acids 
specific to the subunit sequence in the structure 1IRU. CP: 15 positions forming inter-subunit contacts; 
FP: 10 positions are not in contact with other subunits, likely responsible for the formation of the 
secondary and tertiary subunit structure 

SDP Paralogous groups No. 
CP Chain A Chain B Chain C Chain D Chain E Chain F Chain G 

1 48 S E S S R R G 
2 53 R F S R R N L 
3 54 H S R A G D S 
4 55 I L T I V V A 
5 61 E S E D E Q D 
6 72 K A E E E E K 
7 76 Q G H K L Q N 
8 105 G A A G T S C 
9 208 S M K K A T V 

10 209 Q Q Q Q L Q H 
11 215 A G G N − Y S 
12 224 M V K R S R V 
13 260 E E K − − D V 
14 290 F W W W C C Y 
15 301 K N N S A R A 

 FP Chain A Chain B Chain C Chain D Chain E Chain F Chain G 
1 63 R K R H R R R 
2 65 Y V Y F F H F 
3 113 T T A V V A − 
4 116 Q E R K R R E 
5 159 M Y V F M I V 
6 358 A A V A I A I 
7 362 L L T V V T V 
8 363 S K M V M L H 
9 364 T E D Q E P D 

10 410 K G V L N E N 
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Figure 1. Spatial structure of the α-subunit ring. Subunit indices A-G are shown. SDP residues are 
shown in ball representation.  
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SUMMARY 

Motivation: A goal of presented investigation is analysis of conformation combinations 
in proteins. There are no doubt about that conformations of amino acids are combining with 
some preferences (Vlasov et al., 2005). At now there is sufficient material to analyze 
thoroughly structural state of tri- and tetrapeptides as a minimal symmetrical unit of regular 
structures of peptide backbone. It is tentative to reveal the pattern of the alternation of 
conformational states characterizing by different spiral symmetry. 

Results: We have performed clustering analysis, using standard clustering method “K-
means”, to determine for most part of amino-acid residues the frequency of distribution of 
sequences of dihedral angles (φ- and ψ-angles), which are typical for protein helical 
conformations.  It was found that the alternations amino-acid residues with different 
symmetry (3.6 in α-helix, 2 in β-strand) occur quite rarely in comparison to the 
alternations with similar symmetry. Influence of electrostatic in respect of limitations onto 
secondary structure alternation is discussed. 

Availability: none 

INTRODUCTION 

Major part of a globule is formed by a set of symmetrical structures as α-helix, β-
strand and others.  It is obvious that formation a symmetrical network of intrinsic bonds 
including possible hydrogen bonds between atoms in main chain is of important for 
organization of protein structure and is favorable in respect of globule energetic. These 
symmetrical structures play essential role in protein folding. At the same time some 
asymmetrical elements are common in any protein structure. Fragments of such a kind 
wait their classification and functional annotation.   

One can anticipate that majority of specific conformations must be combination of 
typical conformations belonging to allowed regions in Ramachandran map. These typical 
conformations correspond to secondary structures in general but other structural elements 
also possible. 

Two questions arise in connection with sequence of conformations study: 
• How many conformations can be constructed as a combination of typical regular 

protein conformations using corresponding dihedral angles? After this the 
symmetrical features of conformational state will be determined. 

• What about of different conformation sequences occurrence? 
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MATERIALS AND METHODS 

The method of clustering can readily applied for separation of different structural 
patterns. In this work a set of dihedral angles in oligopetides of fixed length was chosen 
as input data for clustering. Wide-spread method of K-Means implemented in 
mathematical package Statistica v 6.0 was used to solving the problem. Special program 
has been developed for interpretation results of clustering. This approach has been 
applied to the data on dihedral angles in protein structures from PDBSelect. This set 
of protein data is useful for many aims and may be treated as representative and sufficient 
narrow possessing fast computations. It should be noted that these data base includes 
nonhomological proteins (identity is not more 30 %). Method of ε-networks was applied 
for improving the quality of results. This method is convenient for elimination regions 
with rarely density of population. 

RESULTS AND DISCUSSION 

Results of clustering present division of set of structures into classes. For each class 
we estimated average values of operation parameters, deviation of these parameters inside 
the clusters, the number evinces in cluster. Unfortunately, we could not achieve the 
absolute division. It is likely in connection with the character of data and space operation 
factors, and clustering method peculiarities. However, we could distinguish conservative 
clustering in different divisions. These clusters conserve their characteristics in all 
divisions. This evidently implies that these clusters are correct and reflect the real 
structures in proteins.  

Conformations of oligopeptides from conserved clusters are combinations of 
conformational states of typical conformations as expected. Structures with non-typical 
conformational states do not form constant clusters. For example, we have found some 
clusters with β-turns, but all of them were unstable. As a result it is possible to descript 
these stable structures in terms of typical conformations denoting the conformation state 
of amino acid by  region of typical conformation.  

Frequencies of these structures show strong nonregularity.  This effect can be 
explained on the basis of symmetry mechanism of compensation of electrostatic 
interactions. For example, pairs of adjacent amino acid residues in β-conformation raise 
frequencies of occurrence of the structure (symmetry in β-strand is 2), at the same time 
very small fragments (included one or residues) in α-conformation especially in the 
middle of oligopeptide reduce the frequency (symmetry in α-helix – 3.6). There is 
prohibition of some structural types. Such structures as β-α-β-α, α-β-α-β, β-α-α-β are 
absent in all divisions. There is no compensator electrostatics in these structures. At last, 
structures α-α-β and α-α-β-α occur only in some divisions. We obtained the list of stable 
clusters of tripeptides and tetrapeptides: 

Table 1. List of stable clusters of tripeptide and tetrapeptide structures. The symbol β signify 
conformational state corresponding to region of β-strand in the Ramachandran map, α – α-helix, lα – left 
α-helix. The total number of structures in this sample is 637 thousands. Average deviation from indicated 
numbers in cluster is lower than 3 thousands for the large clusters, and 2 thousands for small ones 

Structure No, thous Structure No, thous 
β-β-β ~ 130 β-β-β-β ~93 
α-α-α ~220 α-α-α-α ~190 
α-β-α ~17 α-β-β-β ~23 
α-β-β ~32 β-α-α-α ~23 
β-α-β ~21 β-β-β-α ~24 
β-α-α ~35 β-α-β-β ~20 
β-β-α ~32 β-β-α-α ~18 
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Structure No, thous Structure No, thous 
β-β-la ~14 β-β-α-β ~20 
la-β-β ~17 α-α-β-β ~15 
β-lα-β ~8 α-α-α-β ~19 
α-α-lα ~13 α-β-α-α ~10 

  α-β-β-α ~9 
  β-β-β-lα ~11 
  β-lα-β-β ~15 
  lα-β-β-α ~5 

 
A statistical approaches as operation of clustering is useful for finding of general rules 

that control structure formation in short oligopeptides. Clustering operation is partly 
complicated by noise effect through all Ramachandran plot, and  application of  
ε-networks cannot overcome the noise effect. Maybe in turn the space of operation 
parameters is not natural for determination of structural types. However, in spite to this 
negative factors it was achieved clustering in reasonable and prominent groups of 
structures. The results demonstrate that there are no equal frequencies of various 
combinations of elementary conformation states. On of possible explanation consists in 
taking into account the electrical dipole moment of amino acid residues and possible 
electrostatic compensatory effects in this aspect. 
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SUMMARY 

Motivation: Interpretation of protein folding experiments in terms of the 
transitions between characteristic states of the system may allow valuable insight into 
the folding mechanism.  

Results: The ubiquitin mutant Ub*G folding experiments of Sabelko et al. (1999), in 
which “strange kinetics” were observed, are interpreted in terms of a simple kinetic 
model. A minimal set of states consisting of a semi-compact globule, two off-pathway 
traps, and the native state are included. Both the low and high temperature experiments of 
Sabelko et al. are fitted by a system of kinetic equations determining the transitions 
between these states. It is possible that cold and heat denaturated states of Ub*G are the 
basis of the off-pathway traps. The fits of the kinetic model to the experimental results 
provides an estimate of the rate constants for the various reaction channels and show how 
their contributions vary with temperature. Introduction of an on-pathway intermediate 
instead of one of the off-pathway traps does not lead to agreement with the experiments. 

INTRODUCTION 

Recent progress in experimental studies of protein folding on millisecond and faster 
time scales has increased the interest in the existence and role of intermediates in the 
folding process (Ferguson, Fersht, 2003). Ubiquitin is a benchmark system for protein 
folding studies due to its structural and physical properties (Went et al., 2004). To provide 
a fluorescence probe for monitoring folding of ubiquitin, Khorasanizadeh et al. (1993) 
replaced the largely buried Phe45 by a Trp. In the recent temperature-jump experiments 
of Sabelko et al. (1999), which we analyze here, a double mutant (F45W, V26G) of 
human ubiquitin (Ub*G) was used; the V26G mutation was added to destabilize core 
contacts and a critical helix to make cold denaturation possible. Sabelko et al. found that 
the time-dependent population of unfolded states varied with temperature from a double-
exponential distribution at T = 2 °C to a stretched-exponential one at T = 8 °C. The 
interest of the latter is that it occurs on warming rather than cooling, and the high 
temperature spectrum of characteristic times is (quasi-) continuous and spans a broad 
region, corresponding to what has been referred to as “strange kinetics” (Shlesinger et al., 
1993). In protein folding such kinetics have been associated with downhill folding 
through an array of intermediates separated by relatively low free energy barriers (e.g., 
Skorobogatiy et al., 1998). Sabelko et al. (1999) adduced arguments in favor of a 
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downhill folding scenario at T = 8 °C but also indicated that the kinetics at this 
temperature is well fitted by a three-exponential distribution. Thus, the presence of long-
living intermediates could not be ruled out. Stretched-exponential distributions are 
convenient for approximation of experimental data, because they require just two 
parameters, a time constant and a power of the stretching exponent. A shortcoming of this 
approach is that the relation between the energy landscape and the parameters is not 
direct; i.e. knowledge of the parameters gives little information about specific features of 
the landscape.  Multi-exponential distributions require more fitting parameters. However, 
if these distributions are related to a specific model and represent solutions of a system of 
kinetic equations, valuable insight into the folding process can be obtained. Recently, we 
simulated the Monte Carlo folding kinetics of a 27-bead square lattice protein model and 
showed that the results could be described by a simple kinetic model with off-pathway 
intermediates (Chekmarev et al., 2005). In this work we use a similar model to interpret 
the data on Ub*G folding.  

KINETIC MODEL 

We consider three kinetic schemes of the folding process, which include a semi-
compact globule, off- and on-pathway intermediates and the native state. The schemes 
differ in the  number and type of the intermediates involved: scheme #1 includes one off-
pathway trap, scheme #2 two separate off-pathway traps, and scheme #3 one off-pathway 
trap and one on-pathway intermediate, which connects the globule and the native state. 
Given the rate constants, the time-dependent populations of the states are determined by 
the systems of linear kinetic equations. Following the experimental conditions of Sabelko 
et al. (1999), we do not include the fully extended (denaturated) state of the system in 
consideration. Also, since the experimental population of unfolded states does not show a 
tendency to stabilization at long times, we infer that native state unfolding is negligible. 
Therefore, the folding time is equated to the first passage time.  

Solving the systems of kinetics equations yields the time-depending populations of the 
states as functions of the rate constants, among them, the population of the unfolded 
states, which was measured by Sabelko et al. (1999). Then the fit of the theoretical 
solution to experimental distribution can be used to estimate the rate constants.  

RESULTS AND DISCUSSION 

Testing the previously mentioned kinetic schemes against the experimental results of 
Sabelko et al. (1999), we have found that both the low and high temperature experiments 
(i.e. at T = 2 °C and T = 8 °C) are well described within the framework of scheme #2. 
However, at low temperature (T = 2 °C) only one trap is essential and scheme #2 reduces 
to scheme #1. Table 1 shows the corresponded values of the fitted rate constants, and Fig. 
1 and 2 compare the theoretical solutions with the experimental results. Introduction of an 
on-pathway intermediate instead of one of the off-pathway traps (scheme #3) does not 
lead to agreement with the experiments. 

Table 1. Ub*G folding: Rate constants rβα (μs-1) and waiting times τβα = 1/ rβα (μs, in brackets) for the 
transitions from state α to β. Subscripts g, d1, d2 and f stand for the semi-compact globule, off-pathway 
traps 1 and 2, and the native state, respectively 
 

d1,g d1,g ( )r τ  g,d1 g,d1( )r τ  d2,g d2,g( )r τ  g,d2 g,d2( )r τ  f,g f,g( )r τ  

T = 2°C 8.0×10-3 (125) 2.4×10-4 (4105) 4.1×10-9 (2.4×109) 1.7×10-2 (60) 3.7×10-2 (27) 
T = 8°C 2.0×10-3 (510) 5.6×10-4 (1799) 2.0×10-2 (51) 8.0×10-3 (125) 1.9×10-2 (52) 
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Figure 1. Populations of the unfolded states of Ub*G at T = 2 °C (panel a) and T = 8 °C (panel b). The 
triangles correspond to the experimental data of Sabelko et al. (1999), and the solid line to the theoretical 
solution with the rate constants from Table 1. 

With a knowledge of the forward and backward rate constants (Table 1), it is possible 
to calculate the free energies of the off-pathway traps with respect to the globule. 

Assuming detailed balance, rj, i/ri, j = exp ( )j i B/F F k T−⎡ ⎤−⎣ ⎦ , where Fα is the free energy 

of state α, and kB is the Boltzmann constant, we found Fd1 – Fg ≈ –1.9 and Fd2 – Fg ≈ 9.6 
at T = 2 °C, and Fd1 – Fg ≈ –0.7 and Fd2 – Fg ≈ –0.5 at T = 8 °C, with the energy measured 
in kcal/mol. An additional assumption about the value of the prefactor Aj, i  in the 
Arrhenius equation, rj, i = Aj, i  exp ( )j,i B/F k T−Δ , made it possible to estimate tentative 
values of the effective free energy barriers between the states, ΔFj, i. For this, we assume 
that the Aj, i  are equal to the frequently used :speed limit: of 1μs-1, characteristic of small 
proteins (Kubelka et al., 2004). The results are shown in Table 2, and they are similar in 
magnitude to the free energy barriers obtained for a set of small proteins (Kubelka et al., 
2004). Of course, the actual value of the barrier depends on the choice of the pre-
exponential factor. The observed large variation of the effective free energies with 
temperature is indicative of the complexity of the system and the temperature dependence 
of the reduced energy landscape.  

In accord with the variation of the free energy surface with temperature, which was 
proposed for ubiquitin (Sabelko et al., 1999), it is possible that the cold and heat 
denaturated states of Ub*G are involved in the off-pathway traps. If so, when one passes 
from T = 2 °C, where cold denaturation dominates, to T = 8 °C, which corresponds to the 
optimum native stability (Sabelko et al., 1999), the role of the cold denaturated state in 
the folding process would decrease and that of the heat denaturated state would increase. 
Alternatively, a trap could be associated with a state having excess helix relative to the 
native state (M. Gruebele, personal communication). We hope the present analysis will 
stimulate further studies of ubiquitin, a model system for which a definitive folding 
mechanism is likely to be determined by additional experimental and theoretical analyses.  

Table 2.  Ub*G folding: Effective free energy barriers between the characteristic states (kcal/mol). 
Subscripts g, d1, d2 and f are as in Table 1 

 ΔFd1g ΔFgd1 ΔFd2g ΔFgd2 ΔFfg 
T = 2 °C 2.6 4.6 11.8 2.2 1.8  
T = 8 °C 3.5 4.2 2.2 2.7 2.2  
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SUMMARY 

Motivation: Integral membrane proteins (MP) are pharmaceutical targets of 
exceptional importance since more than 50 % of currently marketed drugs target these 
objects. Due to technical difficulties, modern experimental methods often fail to 
determine 3D structure of MPs. Computational methods for modeling MPs structure and 
assessment of these models’ quality may be very helpful in this case. 

Results: We propose a novel method for quantitative estimation of the transmembrane 
(TM) domains models’ quality. The approach is based on the concept of environmental 
profile. A non-redundant set of 26 high-resolution X-ray structures of α-helical TM 
domains is used to define five classes of residues’ environment, considering polarity of 
nearest protein surrounding and accessibility for a given residue. Residues’ preferences 
for each environment class are calculated. The main results are: (1) The proteins length 
correlates with the proposed scoring function values, defining a way to differentiate 
“well-folded” structures from misfolded ones; (2) The method efficiently delineates 
crystallographic structure of visual rhodopsin both in a set of twelve its computer models, 
containing certain errors and ensemble of artificially generated misfolded structures of 
rhodopsin; (3) Photosynthetic MPs demonstrate different score-length dependency, 
suggesting distinct packing characteristics for these proteins. 

INTRODUCTION 

Integral membrane proteins (MP) are objects of special biological and pharmaceutical 
importance, establishing every cell’s communication with the rest of the world, including 
signal transduction, light absorption and formation of TM potential. A very large and 
important class of MPs, G-protein coupled receptors (GPCRs), is a target for > 50 % of 
currently marketed drugs. Unfortunately, possibilities of modern experimental techniques 
for MPs 3D structure determination are far under pharmaceutical industry (e.g., structure-
based drug design) requirements. Current proportion of MPs in Protein Data Bank (PDB) 
is less than 1 %, whereas every sequenced to date genome encodes 15–30 % of membrane 
proteins. To overcome this discrepancy, development of computational methods for 
modeling MPs structure and assessment of these models’ quality is believed to be  
very helpful. 
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Many efforts have been made to understand the principles of structural organization of 
MPs, but the problem is yet to be solved. What are the differences in their packing and 
structure as compared to soluble proteins? Some methods designed for MPs structure 
prediction utilize sequence statistics or more general characteristics (e.g. protein packing 
density), but only very few of them use high-resolution structural data on  
residues’ environments. 

METHODS AND ALGORITHMS 

Creation of membrane proteins database. We used MPs structures with primarily 
α-helical TM domains, determined by high-resolution (< 3.5 Å) X-ray crystallography. 
The training set contains 26 structures of proteins that have no sequence homology to 
each other. A separate set contains 6 structures of photosynthetic proteins. All protein 
structures were aligned along the membrane normal (hereinafter, Z axis) in order to place 
cytoplasmic sides of plasma MPs and matrix sides of inner mitochondria MPs to Z < 0 
area, and vice versa. Optimal Z position of the entire structure and the thickness of “TM” 
hydrophobic layer were determined by finding solvation energy minimum using implicit 
membrane-water environment model (Efremov et al., 2000). Only α-helical residues (as 
determined by DSSP (Kabsch, Sander, 1983)) within “optimal” hydrophobic layer (27 Å 
in average) plus 5 Å at each side were selected for the study. 

“Membrane Score” calculations. In order to characterize the  environment of a 
particular residue, we used fractions of full residue’s surface that face polar and non-polar 
atoms of other TM α-helices, respectively: 

0 0
1 0 1 0

0 0 0 0, '' ,Sp Sp Snp Snp
Fp Fp Fp Fnp Fnp Fnp

S S S S
= − ≡ − = − ≡ −  (1) 

where Fp’ and Fnp’ are areas of polar (Sp) or non-polar (Snp) contacts, divided by the 
residue “self” area in Gly-Res-Gly motif. Fp0 and Fnp0 are the corresponding values for 
isolated TM helices. The difference between them is a measure of interhelical effects. 
Given the Fp1 × Fnp1 distributions for i residue (Fig. 1a) and membrane environments 
scheme with parameters a, b and tgα (Fig. 1b), we define a membrane scoring function: 

ln( ),ij
ij

j

P
MemScore

P
=  (2) 

ln( ),ij
ij

ij j

P
TotalMemScore N

P
= ∑  (3) 

where Pij is a probability to find residue i in environment j, and Pj is a probability to 
find any residue in environment j (j occupancy). The total score was calculated as in (3), 
where Nij is a number of residues i in class j. Corresponding value in (2) was never zero 
and was set to unity if there were no i residues in j class, but if it was zero in (3), the 
entire term was not considered. Exact a, b and tgα values were determined in order to 
maximize the total score value (3) for the whole training set. 

Rotameric test. We generated an ensemble of conformations of visual rhodopsin, where 
every TM α-helix was rotated around its axis with increment 90°, resulting in 16384 (47) 
rotameric conformations. A simple energy minimization was applied to avoid sterical clashes. 
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RESULTS AND DISCUSSION 

To establish a method for assessment of MPs packing quality, we introduced two 
residues’ environment characteristics, namely fractions of full residue surface that are in 
contact with polar and non-polar atoms of other TM α-helices, Fp1 and Fnp1, respectively 
(see Methods for details). For the whole training database (see Methods) we obtained 
distributions of these parameters for each residue type, as shown in Fig. 1a. 

 

Figure 1. Residues’ environmental characteristics distributions derived from “training” database for 
Arginine and Leucine (a). Black circles correspond to the “central” residue location (|Z| < 15 Å), and 
gray – to the interfacial. Proposed scheme for membrane environment classes (b). Class 1 corresponds to 
exposed one, classes 2 and 3 – to intermediately buried, 4 and 5 – to buried. Classes 2 and 4 correspond 
to non-polar environment, whereas 3 and 5 – to polar one. 

As one can see, there are much more leucine residues in TM domains than arginines. 
This demonstrates strong preference of these residues to “central” and to 
interfacial locations, respectively. Also, most of leucines are situated in non-polar 
environment (close to “non-polar” Fnp1 axis) and arginines – in polar. In Fp1 × Fnp1 
coordinates the proximity to zero means high accessibility for membrane milieu (high 
values of accessible solvent area, ASA), whereas location near the Fp1 = 1 – Fnp1 line 
means considerable burial (ASA ≈ 0). Based on these observations, we propose the 
following scheme for definition of environmental classes for TM α-helical domains of 
proteins (Fig. 1b). The scores were calculated for each combination of residue type and 
membrane class (not shown), enabling assessment of the quality of the whole structures.  

In Fig. 2 the membrane scores for proteins from the training set are plotted against TM 
domain length. It is seen that, there is a good correlation between them. This enables 
differentiation between correct (e.g. crystal) and misfolded structures. To test the 
possibility, we chose from public domain 12 computer models of bovine visual rhodopsin, 
built prior to release of its crystal structure (Palczweski et al., 2000), and compared them 
in terms of membrane score values. As seen in Fig. 2, all of them lie below the crystal 
structure, and those that have been built in a fully automatic manner (e.g., at Swiss-Prot, 
MODBASE, GPCRDB servers), score much lower than the carefully optimized ones 
(data not shown). Also, a notable correlation exists between model’s deviation from the 
crystal structure (in terms of r.m.s.d.) and score impairment (not shown). It was noticed, 
that photosynthetic proteins demonstrate different score-length dependency, suggesting 
distinct packing characteristics for them. 
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Figure 2. Membrane score values as function of TM domain length for training set (black diamonds), 
photosynthetic proteins (white circles) and computer models of visual rhodopsin (gray triangles). 

In order to further validate our method’s possibility to distinguish correct and 
misfolded structures, we generated more than 16000 rhodopsin’s rotameric conformations 
(see Methods), vast majority of which are believed to be misfolded. For this ensemble, we 
compared the ability of our method to rank the crystal structure among it, with the results 
obtained using the well-known Eisenberg’s method (Bowie et al., 1991), conceptually 
close to ours, but parameterized for globular proteins. As seen from Fig. 3, “classical” 
method, very good for soluble proteins, is unable to mark out the crystal structure, 
whereas the present membrane-tuned method performs rather well.  

 

Figure 3. Distributions of values of scoring functions for ensemble of more than 16000 misfolded 
“rotameric” conformations of visual rhodopsin. Crystal structure position is shown with an arrow.  

a – eisenberg’s 3D-1D scoring function; b – proposed “Membrane score” function. 

To conclude, we have developed a novel method to estimate the packing quality of 
TM α-helical domains in proteins. We suppose that this method will be especially useful 
for GPCRs’ models construction and optimization. 
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SUMMARY 

Motivation: Large volume of proteomic data concerning different protein 
ubiquitylation has been acquired in recent years. Particular ubiquitylation sites for these 
proteins were also identified. This allows us to analyze co-localization of ubiquitylation 
spots and functionally important protein domains, following the idea that ubiquitylation 
can directly affect functional activity of the proteins. 

Results: Our results suggest that ubiquitylation can regulate functional activity of 
concerned proteins through direct steric effects. 

INTRODUCTION 

Ubiquitylation is a process of great importance for many vital cell functions. A 
covalent attachment of highly conserved small protein ubiquitin to another target protein 
significantly changes fate and functional state of target protein (Haglund, Dikic, 2005). 
The aim of the present work was a prediction of possible ubiquitylation effects on protein 
structural and functional properties through evaluation of steric effects of ubiquitin 
attachment. For this purpose we studied co-localization of proteins functionally important 
regions with all possible ubiquitin-modified lysine residues of following proteins: 
orothidine 5′-phospate decarboxylase (ODC), peroxisomal citrate synthase (PCS), X-
linked inhibitor of apoptosis (XIAP) and vertebrate calmodulin (CaM). We take 
advantages of the computational approach to obtain 3D structures of these proteins and to 
analyze its rearrangement with ubiquitin molecule. 

METHODS AND ALGORITHMS 

Active site sequence revealing was performed using ScanProsite tool 
(http://www.expasy.org/tools/scanprosite/). Multiple sequence alignment was carried out 
using ClustalW. BioEdit Sequence Alignment Editor 7.0.5.2 was used for pairwise 
sequence alignment. Modelling of PCS 3D structure was conducted using Swiss-Model 
service (Automated Comparative Protein Modelling Server, http://swissmodel. 
expasy.org) and respective theoretical model was deposited in SwissModel Repository. 
Pairwise structure alignment was calculated interactively using the Combinatorial 
Extension method (http://cl.sdsc.edu/ce.html). Determination of amino acids participating 
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in intersubunit contacts was carried out using Protein-Protein Interaction Server v.1.5 
(http://www.biochem.ucl.ac.uk/bsm/PP/server/). Swiss-PdbViewer program was used for 
3D visualization and model analysis. Solvent accessible surface was calculated for a 
probe sphere of radius 1.4 angstroms. 

IMPLEMENTATION AND RESULTS 

Ubiquitylation of orotidine 5'-phosphate decarboxylase. Orotidine 5'-phosphate 
decarboxylase (EC 4.1.1.23) is responsible for conversion of orotidine 5′-monophosphate 
to uridine 5′-monophosphate, the last step in the de novo pyrimidine biosynthetic 
pathway. According to Peng and coworkers (Peng et al., 2003), the enzyme has 3 
ubiquitin acceptor sites (Lys93, Lys209 and Lys253). We propose that ubiquitylation of 
the first one, Lys93, may lead to several consequences affecting enzyme activity. Lys93 
participates in substrate binding during catalytic act, so its ubiquitylation will abolish 
substrate conversion. Moreover, ODC is active in a homodimeric form. Its both subunits 
participate in active site formation, and Lys93 plays a crucial role in this process. When 
introduced in the area of intersubunit contacts, ubiquitin will completely break these 
interactions and impede the dimerization. Both effects of Lys93 modification by ubiquitin 
mentioned will result in the complete loss of catalytic activity of the enzyme. This 
correlates with data of Smiley and Jones about loss of enzyme activity when Lys93 is 
substituted to cysteine (Smiley, Jones, 1992). We have analyzed the dimer surface and 
showed that Lys93 is buried in the intersubunit contacts area. As far as spatial 
accessibility of a lysine residue is a prerequisite for its ubiquitylation, we can postulate 
that Lys93 can be modified by ubiquitin only in the inactive monomeric form of ODC. 

Another possible ubiquitylation site in ODC is Lys209. This residue is located on the 
protein surface nearby the “entrance” to active site cavity and can be ubiquitylated both in 
monomeric and dimeric forms of ODC. This modification may cause steric limitations for 
both active site accessibility for the substrate and for ODC dimerization ability, and 
therefore may also result in the decrease of enzymatic activity. 

Lys253 is located rather far from functionally important areas of ODC molecule, so 
this residue ubiquitylation may hardly induce steric limitations. 

Ubiquitylation of peroxisomal citrate synthase. Citrate synthase (EC 2.3.3.1) 
catalyzes the synthesis of citrate from oxaloacetate and acetyl-CoA. Ubiquitylation sites 
for PCS are Lys385 and Lys354 (Peng et al., 2003). There are no direct experimental data 
about spatial organization and 3D active site structure of PCS. High rate of conservativity 
of this enzyme in eukaryotes allowed us to carry out comparative modelling of PCS and 
to obtain reliable 3D structure. We have also identified amino acid residues forming PCS 
active site. A calculation of the solvent accessible surface for PCS 3D model reveals that 
active site residues form a pocket in protein globule surface. Analysis of spatial 
arrangement of acceptor lysine residues in PCS 3D structure revealed that both lysines are 
exposed on the surface of molecule, but located differently relative to active site. 
Conserved Lys385 residue is positioned on the globule surface very close to enzyme 
catalytic pocket, while Lys354 is located far from the active site. Such localization 
correlates with differences in rate of conservativity of two lysine residues. 

Due to the fact of close proximity of Lys385 to the active site pocket and the 
flexibility of the ubiquitin C-terminal extension, we propose that ubiquitin attachment in 
this position may affect catalytic activity of the enzyme by reducing accessibility of PCS 
active site for substrates. Thus, ubiquitylation of PCS Lys385 leads to the same steric 
effects as observed in the case of ubiquitin attachment to Lys209 of ODC. On the 
contrary, we consider functional disturbances due to PCS Lys354 modification unlikely. 

Similarly to ODC, citrate synthase is catalytically active in homodimer form. We 
consider dimeric mitochondrial citrate synthase (MCS) from a pig heart to be applicable 
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for analysis of interconnection between ubiquitylation and protein oligomerization, 
reasoning from high rate of similarity of two citrate synthases. We have shown that MCS 
lysine, homologous to Lys385 of PCS, is overlapped by the second subunit. Thus, two 
consequences can be derived from this observation. Similarly to Lys93 of ODC, ubiquitin 
attachment to PCS Lys385 is possible only in a monomeric form. Being ubiquitylated, 
single PCS subunit escapes from oligomerization. 

Ubiquitylation of XIAP. XIAP is a powerful inhibitor of apoptosis, blocking both 
mitochondrial and Fas-mediated apoptosis pathways through direct binding and inhibition 
of various caspases. XIAP contains 3 BIR domains, which bind caspases, and a RING 
domain with ubiquitin ligase activity, responsible for protein autoubiquitylation. At 
present 2 ubiquitylation sites are identified for XIAP – Lys322 and Lys328, both localized 
within BIR3 domain of the protein (Shin et al., 2003). BIR3 is responsible for interaction 
with initiator caspase 9 and Smac/DIABLO (mitochondria-derived activator of caspases). 
Analysis of interactions with XIAP revealed that aminoacids profiles of contact area are 
the same. Lys322 participates in contact area formation with caspase 9, but not with 
Smac/DIABLO. On the other hand, Lys328 participates in interactions with both XIAP 
partners. Therefore, ubiquitin binding to Lys322, which is major in vivo ubiquitylation 
site of XIAP, may block docking of caspase 9 to its BIR3 domain. It may also influence 
Smac binding, because Lys322 is situated very close to the contact area. The distance 
between this lysine and the nearest amino acid of docked Smac (Ala1) was calculated as 
7,5 angstroms. As far as ubiquitin is a relatively large modifier and has a size of 44 
angstroms, its introduction in this place may sterically disturb interaction with Smac. 

Although Lys328 is a minor in vivo ubiquitin acceptor site, its modification may also 
block docking of both interaction partners on to XIAP. 

Ubiquitylation of calmodulin. Calmodulin mediates the control of a large number of 
enzymes by Ca2+. Its structure comprises 4 so-called EF hands, each of them can bind one 
Ca2+ ion. Among the enzymes to be stimulated by the calmodulin-Ca2+ complex are a 
number of protein kinases and phosphatases.  

Calmodulin has 3 lysines that may be modified with ubiquitin. Probability of 
particular lysine ubiquitylation decreases in a row Lys13 – Lys21 – Lys94. It was 
experimentally shown that monoubiquitylation strongly decreases the biological activity 
of calmodulin by reducing its ability to activate phosphorylase kinase (Laub et al., 1998). 
We have analyzed what mechanism can work in this case, using different CaM 3D 
structures from PDB. These structural data clearly show that CaM undergoes considerable 
conformational changes during interaction with its binding partners. We propose that 
ubiquitin attachment can limit conformational flexibility of CaM and therefore impair its 
ability to form complexes with interaction partners. 

DISCUSSION 

Computational analysis performed shows several direct effects of ubiquitylation on 
the function of target protein. Firstly, ubiquitylation can sterically block protein functional 
domains/active site or cause accessibility limitations, as for the cases of ODC and PCS. 
Secondary, it causes steric disturbances for homo-oligomerization, as it was shown for 
ODC and PCS. Then, it also influences heterologic protein interactions, impeding 
concurrent binding of target protein with its partners, as for XIAP and CaM. Furthermore, 
interaction with partner proteins can be disturbed due to limitations of conformational 
flexibility, as it was observed for CaM. Any of these effects will result in a decrease of 
target protein activity. Thus, we suggest a new “loss-of-function” mechanism of protein 
regulation by ubiquitylation. At the same time functional disturbances forestall further 
ubiquitin-dependent transformation of target protein (for example, targeting for 
proteosomal degradation). It is quite probable that influence of ubiquitylation on protein 
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functional activity is very important in terms of regulation and does not depend of 
degradation function, the more so as ubiquitylation is a reversible process and ubiquitin 
can be removed from target protein by specific deubiquitylating enzymes (DUBs). 

Our findings based on computational analysis of 3D structures of selected target 
proteins well correspond with experimental data on modification of another ubiquitylation 
substrates – NO synthase and cytochrome P450. In particular, it was shown that inactive 
monomeric form of NO synthase undergoes ubiquitylation predominantly in comparison 
with active oligomer (Bender et al., 2000; Dunbar et al., 2004). For P450 co-localization 
of acceptor lysine residue and active site was also shown (Banerjee et al., 2000). Another 
example is CDC48 – multifunctional ATPase, where ubiquitylated lysine is situated 
between AAA ATPase domains. 

All together these data suggest biological relevance of proposed regulatory mechanism. 
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SUMMARY 

Motivation: The creation of artificial proteins is a great challenge in today’s biology. 
Prediction of the experimental results for changes in proteins surely can considerably 
accelerate the development of novel proteins.  

Results: We have derived rules for the prediction of changes in protein 
thermodynamic stability upon introduction of single substitution in sequence. Using 
models of neural networks, backward propagation errors, and the modified KRAB 
method have established the rules. Based on the methods, we developed software 
allowing us to predict protein free energy upon single substitutions. In this work, we also 
compare the results. It was demonstrated that the modified KRAB algorithm, when based 
on the available data, allowed us to predict changes in thermodynamic stability with 
higher accuracy compared with back propagation networks. 

INTRODUCTION 

The creation of artificial mutant proteins with preassigned properties has been a 
challenge for biologists. Artificial mutations required the replacement of a particular 
amino acid by some other in the linear structure of protein (Afonnikov, 2002). Currently 
this is achieved experimentally: designers replace amino acids and make their inferences 
(Yanase et al., 2005; Canadillas et al., 2006). High cost is the major drawback of this 
approach. There is an obvious need in reducing cost without efficiency loss. The first step 
is to develop mathematical methods, then to derive from them software able to predict the 
results of the designed experiments. It should be stipulated that, for a given protein, most 
appropriate mutation versions are sought, such that spare the overall structure of the 
protein without affecting or increasing its thermodynamic stability. 

The Protein Data Bank (PDB) (Berman et al., 2000) was used to tackle the problem of 
defining the amino acid environment at the location of interest in space. The other source 
for model building was the information about changes in protein free energy stored in the 
ProTherm database (Gromiha et al., 2000). We were aware that free energy is an indicator 
of the changes in protein thermodynamic stability. 

Using a neural network-based method and support vector machine allows to predict 
the sign of changes in protein free energy upon single point mutation (Capriotti et al., 
2004, 2005). The accuracy of these predictors is high, approximately 75 %. In this paper, 
we present methods that enabled us to predict not only the positive or negative signs, but 
also the neutral changes in protein free energy upon single point mutation. 
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DATABASE PROCESSING 

The functional and structural data for proteins are stored in PDB. We proceeded on the 
assumption that amino acids in the nearest environment of the spatial location of interest are 
consequential effect for the amino acid type at the location of interest. Based on the above 
assumption we developed a program that converted the PDB information into a table. Every 
protein location around which substitutions were to be replaced were encircled by spheres,  
r = 10Å. Then, the amino acid types within every sphere, the type of secondary amino acid 
structure at the examined location, and the relative solvent accessibility (RSA) values were 
stored. Information about RSA can be very useful. This is because mutations on protein 
surface affect much less free energy than those in the protein core (Guerois et al., 2002). 
Information about amino acid types within the drawn sphere was encoded by a  
20-dimensional vector. Every vector component was compared with a particular (1 of the 
20) amino acid type, and the vector component was equal to the number of amino acid types 
within the drawn sphere. We considered four secondary structure types (Strand, Helix, Coil, 
Turn) defined by the algorithm STRIDE Frishman, Agros (1995). The secondary structure 
type was encoded in the same way using a vector of the 4-dimensional space. Each 
component of the vector corresponded to one of these 4 secondary structure types. 

We took information about changes in the free energy (ΔΔG) upon the introduction of 
the single mutation in the protein sequence from the ProTherm database. The information 
about the amino acid types before and after the introduced mutation was collected. Also, 
we collected information about the ambient experimental conditions (temperature, pH). 
Information about the mutations was coded by a 20-dimensional vector. These 20 
elements code for the corresponding 20 amino acid residues, the element corresponding to 
the amino acid type before the mutation we defined as “-1”, the element corresponding to 
the deleted residue, and as “1” the introduced residue (the one after mutation). All the 
remaining elements were kept equal to 0. 

We considered two datasets. The S1 contained information about amino acids within 
the local environment of the amino acid around which the mutation was introduced; also, 
in addition the S2 contained information about the secondary structure type at the 
examined position. 

Thus, S1 contained vectors of 43 components and S2 had 47 components. S1 and S2 
contained 2126 vectors. 

We did not envisage predicting the accurate value of changes in the free energy 
caused by the introduced mutation, rather we strived to define the direction of the change, 
i.e. our intention was to predict the variability or invariance of the protein free energy. 
Accordingly, their values (ΔΔG) were assigned to groups: 
1. ΔΔG > 0.1 
2. – 0.1 < ΔΔG < 0.1 
3. ΔΔG < – 0.1 

ALGORITHM DESCRIPTION BACK PROPAGATION NETWORK 

To tackle the issue, two neural networks were used. Both were one-layer perceptron. 
The N1 had 43 input neurons, it contained 4 neurons in the hidden layer; its output had 3 
neurons. The N1 was trained and tested on the S1 dataset. The resulting unity in the first 
output neuron as a result of network function increased (ΔΔG > 0.1), it remained 
unaltered in the second (– 0.1 < ΔΔG < 0.1) and decreased in the third (ΔΔG < – 0.1). 

The N2 structure contained 47 neurons in input. Four additional neurons were used to 
code the amino acid structure of the secondary type. It contained 6 neurons in the hidden 
layer; its output had 3 neurons. The N2 was trained and tested on the S2 dataset. 
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The value of 0.5 was accepted as the threshold for the output of the neural networks. When 
the value was greater than 0.5 at the network output, the value was accepted as unity (rounded 
up), when the output value was smaller than 0.5, the accepted value was 0 (rounded down). 

If the outputs of the neural networks consisted of more than one unity, then our choice of one 
of the 3 ΔΔG value groups was based on the absolute values of outputs of the neural networks. 

KRAB ALGORITHM 

KRAB (Zagoruyko, 1999) was the second algorithm. Let vectors from S1 and S2 be 
points in multivariate space. The distance between points we define through the 
Euclidian’s distance. 

Work with KRAB started with the finding of a pair of points with the minimum distance 
between them. The found pair was connected with an edge. Then, the next nearest point 
pairs of those that were not as yet connected to the already built graph were linked. The 
procedure was reiterated until all the points were connected by edges. Such a graph is 
loopless, and the total length of all its joined edges is minimal. The graph which such 
features is known as the shortest open pathway (SOP) (Prim, 1961). To divide the graph 
into two parts, the longest edge linking the vertices of different types was removed. The 
operation was iterated until a subdivision was achieved that include graph points of only one 
type in each and every class. A class is a set of points connected by edges. The 
representative element whose characteristics are the averages for a class was compared with 
each class. The type of a vector is defined by type of the nearest representative element. 

RESULTS 

The datasets S1 and S2 were subdivided into two portions of the same size. Each portion 
contained 1063 vectors. One portion was used to train the algorithms, the other was applied to 
validate the accuracy of the established prediction rules. Accuracy was expressed as the 
percent of the correctly predicted values for the direction of changes in the free energy among 
the elements of the validated samples. The results are summarized in Table 1. 

Clearly, the information about the secondary structure type proved to be useful in the 
prediction of changes in protein free energy. Using two neural networks and KRAB, we 
achieved an increase in prediction accuracy when relying on the S2 set. It is noteworthy 
that the KRAB algorithm provides improved accuracy compared to the neural networks 
we proposed. Also, training of the KRAB algorithm is less time consuming. 

Table 1. Performance of the applied methods 
Set 
Method S1 S2 

N1 68.08 % – 
N2 – 72.58 % 
KRAB 73.41 % 75.83 % 
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SUMMARY 

Motivation: In proteins, α-helices can be packed in some different ways and each type 
of the α-helix packing forms a specific structural environment (or structural context) of 
side chains forming the interface. 

Results: A stereochemical analysis of intra- and interhelical side chain–side chain and 
side chain–main chain interactions in different α-helical packings enable us to show that 
the specificity of these interactions is dependent not only on the physico-chemical 
character of residues but also on their structural context. 

INTRODUCTION 

Hydrogen bonding, ionic and hydrophobic interactions play important roles in 
stabilizing the native structure of a protein as well as in protein folding. It is widely believed 
that, whereas nonspecific hydrophobic interactions contribute to protein stability, the polar 
interactions can impart specificity to protein folding. An analysis of the frequency of 
occurrence of interhelical polar side chain–side chain pairs connected by hydrogen bonds or 
salt bridges in proteins shows that some of them occur frequently, others rarely, and there 
are those not to occur at all (Efimov, Kondratova, 2003). It is reasonable to assume that 
higher frequencies of occurrence of some interhelical pairs show that interactions are 
favorable for these side chain–side chain pairs compared to others. This does not mean that 
one side chain “recognizes” the other. The specificity appears at the level of higher order 
structures, for example, in pairs of closely packed α-helices. 

METHODS AND ALGORITHMS 

For this study, a data set of 120 non-homologous globular α-proteins and 45 coiled 
coils was used. Interhelical hydrogen bonds were determined using WHAT_IF 
(http://www.cmbi.kun.nl:1100/WIWWWI/). Interhelical salt bridges were determined 
with the use of our own software. 
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IMPLEMENTATION AND RESULTS 

In proteins, α-helices can be packed in some different ways and each type of the α-
helix packing forms a different structural environment (or structural context) of side 
chains forming the interface and taking part in interactions. There are two main ways that 
amphipathic α-helices pack against each other. In the first case, two α-helices are packed 
so that their hydrophobic side chains form a double layer in the packing interface. Here, 
hydrophobic stripes of the α-helices interact in a face-to-face manner and hence this is 
referred to as the face-to-face packing of α-helices. In the case of a side-by-side packing 
of α-helices, their hydrophobic stripes associate in a side-by-side manner and form a 
common hydrophobic surface on the bihelical  structure. In each case, α-helices can be 
packed either parallel or antiparallel. Two α-helices neighboring in the chain, packed side-
by-side and antiparallel can form either a right-turned or left-turned α-α-hairpin (for 
details, see Efimov, 1979, 1999). 

 

Figure 1. Comparison of distances between backbone surfaces forming the interface of pairs of  
α-helices packed in α face-to-face (A) or side-by-side manner (C). The Сα-Сα′ distance (the prime denotes 
belonging to another helix) is an average distance between Сα-atoms of closest residues forming the interface. 
N is the number of α-helical pairs having the corresponding distance. Circular diagrams on the right show the 
frequency of occurrence of sidechain-sidechain pairs forming interhelical H-bonds in the corresponding sets of 
α-helical pairs. Donors and positively charged groups of one helix are laid of on the horizontal axes, while 
ordinates show acceptors and negatively charged groups of the other helix. The radius of the circle is directly 
proportional to the frequency of occurrence of the corresponding sidechain-sidechain pair.  

A stereochemical analysis of these α-helical packings in a data set of 120 non-
homologous globular α-proteins and 45 coiled coils has shown that: 

i) On average, backbone surfaces forming the interface are arranged closer in the side-
by-side packings than in face-to-face packings of α-helices (Fig. 1A, C). 

ii) In pairs of α-helices packed face-to-face, the interhelical H-bonds and salt bridges 
are formed, as a rule, between long side chains (most often Lys-Glu, Lys-Gln, Arg-Glu 
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and Arg-Gln pairs, see Fig. 1B), and those in the side-by-side packings are formed by 
both long and short side chains (Fig. 1D). This appears to be one of the most important 
determinants of specificity of the α-helix packing in proteins. For example, if two 
interacting α-helices have no long side chains in the corresponding positions, they can not 
be packed face-to-face but can be packed side-by-side. 

iii) Each type of the α-helix packing has its specific set of rotamers of hydrophobic side 
chains in a- and d-positions. In other words, selection of side chain rotamers in a- and d-
positions of α-helices depends on the type of the α-helix packing and consequently on the 
structural context. In order to demonstrate this feature we used a representative set of 13 
coiled-coil dimers in which α-helices are packed face-to-face and parallel: 1D7M, 1DH3, 
1GD2, 1ZII, 1UIX, 1KDD, 1CZ7, 1KQL, 1S9K, 1LLM, 1CE9, 1T6F, 1P9I. Fig. 2 shows that 
in these proteins most side chains of leucines found in a-positions have trans-isomers  
(χ1 ≅ 180°) and those in d-position – -gauche-isomers (χ1 ≅ -60°). This is a characteristic of α-
helices packed face-to-face and parallel. Other packings of α-helices have different sets of 
side-chain rotamers (Efimov, 1979; Brazhnikov, Efimov, 2006, in preparation). For example, 
in α-helices packed side-by-side and parallel (as found, e.g., in coiled-coil tetramers) most of 
Leu residues occupied a-positions have side-chain g-rotamers and those in d-positions t-
rotamers. It should be noted that these strong rotamer preferences depending on the residue 
position and the structural context have been demonstrated for the first time. Earlier 
computational studies have described the identification and classification of side-chain 
rotamers as well as the frequency of occurrence of different rotamers depending on the local 
secondary structure (see, e.g., Dunbrack, Cohen, 1997; Lovell et al., 2000). 

 

Figure 2. Distribution of torsion angles of leucine side chains found in a-positions (A)  
and d-positions (B) of 13 coiled-coil dimers. 

DISCUSSION 

A principal prerequisite of bonding is known to be certain proximity of the partners to 
each other. For H-bonding, the donor-acceptor distance should be less than 3,5 Å (according 
to WHAT_IF criteria) and in salt bridges the distance between heavy atoms of oppositely 
charged groups should be less than 4 Å. In face-to-face packings of α-helices, bulky 
hydrophobic side chains are located in the interface and this results in larger interhelical 
distances as compared with side-by-side packings, where hydrophobic side chains are 
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arranged on the surface. In our opinion, this is the main reason that only long polar side chains 
form interhelical H-bonds and salt bridges in face-to-face packings of α-helices (Fig. 1A, B). 
In side-by-side packings, the interhelical distance is such that short side chains are able to form 
interhelical H-bonds (Fig. 1C, D). On the other hand, intra- and interhelical interactions 
between hydrophobic side chains also differ in face-to-face and side-by-side packings of α-
helices thus resulting in different sets of hydrophobic side chain rotamers. 
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SUMMARY 

Motivation:  At present, there are abundant experimental data concerning associations 
between the mutations in the p53 protein and cancer. Not of all the molecular mechanisms 
underlying the impairment of p53 function are known. 

Results: We support here our previous assumption that G245C mutations can give rise 
to an additional Zn binding site in the immediate vicinity to the functionally significant 
binding site (Ivanisenko et al., 2005). We demonstrated here that the interaction energy of 
the Zn ion in the G245C mutant with the de novo arisen site is commensurate with the 
interaction energy in the wild-type p53. The presence of an additional site in the mutant 
can damage p53 conformation upon interaction with DNA. Also, using molecular 
mechanics, we calculated the effects of certain other mutations on the zinc interaction 
energy with the normal site. 

INTRODUCTION 

The p53 tumor suppressor is a transcription factor. In response to various types of 
genotoxic stresses, p53 transactivates a number of genes by binding to specific DNA 
sequences (el-Deiry et al., 1992), thereby arresting cell cycle, repairing damaged DNA, or 
inducing apoptosis as the cell fates (Giaccia, Kastan, 1998; Jin, Levine, 2001). The 
structure of the p53 core DNA-binding domain (residues 94–312) that binds directly to 
the DNA sequence has been resolved by X-ray crystallography. The resolved structures 
have been obtained for certain p53 mutations, for example, the crystal structure of a super 
stable mutant of human p53 core domain (Joerger et al., 2004). 

In about half of all the human cancers, p53 is inactivated as a direct result of missense 
mutations within the p53 gene. Most of these mutations map to the DNA-binding core 
domain (Hainaut, Hollstein, 2000), and six “hot spots” stand out as the most frequently 
associated with human cancer (R175H, G245S, R248Q, R249S, R273H, and R282W). 
However, little is known about the underlying molecular mechanism of impaired p53 
function upon mutations. There exist mechanisms implying how the tumorigenic p53 core 
domain mutations can truly cause reduction in p53 site-specific DNA binding activity 
(Kern et al., 1992; Martin et al., 2002). The putative mechanisms assume the eliminating 
critical protein-DNA contact like R273H (Bullock et al., 1997; Wong et al., 1999), 
lowering thermodynamic stability, like I195T (Friedler et al., 2003), or enhancing loss of 
the single bound Zn2+ ion, like R175H (Butler, Loh, 2003). The Zn-free p53 core domain 
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appears to promote aggregation of Zn-bound p53 via a nucleation-growth process. 
Through a combination of induced p53 aggregation and diminished site specific DNA 
binding activity, Zn2+ loss may represent a significant inactivation pathway for p53 in the 
cell (Butler, Loh, 2003).  

Our relevant assumption was that certain mutations can give rise to novel functional 
sites (for details, see Ivanisenko et al., 2005). We found an extra Zn binding site that 
overlaps the normal Zn binding site in the mutant protein, G245C. According to the X-ray 
crystal structure of the p53 core domain (PDB ID 1gzh), Zn2+ is coordinated to the C176, 
H179, C238, and C242 residues. The mutation G245C gives rise to a new site (H179, 
C242, and C245) similar in structure to that for Zn2+ cystidine deaminase binding [PDB 
ID 1af2, (Ivanisenko et al., 2005)]. We report here the energies calculated for the 
interaction of the Zn2+ ion with the wild-type and the novel site. The data were obtained 
using molecular mechanics. It was demonstrated that the calculated energies agree with 
each other. This is evidence that supports the functionality of the novel site. 

METHODS AND ALGORITHMS 

The spatial structures of the human p53 core domain were used. These included the 
wild-type structure (PDB ID 1gzh), the model structure of the R175H mutant obtained by 
the SCWRL3.0 program  (Canutescu et al., 2003), also the model structure of the G245C 
mutant we previously used (Ivanisenko et al., 2005). The initial position of Zn2+ for the 
Zn-protein complex in the case when Zn is bound to the new site in the G245C mutant 
was defined using the PDBSiteScan program (Ivanisenko et al., 2004). Unlimited 
geometry optimization of the Zn - protein complex in the area of its binding site was used. 
The L-BFGS energy minimization method implemented in the GROMACS 3.3.1 package 
(Berendsen et al., 1995; Lindahl et al., 2001) was applied. The minimization convergence 
limit 5 kJ/mol*nm was used. To maintain electroneutrality, the appropriate amounts of 
Cl- anions were added, the water molecules were presented as point charges (SPC-
model). The OPLS-AA/L all-atom force field was used; the cut-off value for the van-der-
Waals potential was 1 nm; the Coulomb interaction was calculated by the PME method. 

Initial calculations demonstrated that, depending on the starting geometry and the 
chosen optimization method, the final configurations of the system differ by the 
interaction energy of Zn2+ with the protein (different local minima) in the 10–20 kJ/mol 
range, and, in certain cases, up to 50 kJ/mol. To minimize the error due to the “escape” of 
the system to acquire novel unsuitable configurations, we used the same calculation 
procedure for all the mutant proteins. The procedure  was as follows. (1) a single 
geometry of wild protein was accepted as the starting geometry, mutations were induced 
in the geometry using the SCREWL3.0 program that does not affect the nonmutated 
amino acid residues; (2) the binding site geometry was partly “frozen” (Zn ion and the its 
four nearest atoms) and the entire system with convergent limit 10 kJ/mol*nm was 
minimized; (3) the binding site atoms were “unfrozen”, and the minimization procedure 
with convergent limit 5 kJ/mol*nm was reiterated; it should be noted that the increase in 
accuracy from 10 to 5 kJ/mol*nm produces the correction in interaction energy between 
Zn2+ and protein in 1–3 kJ/mol range; (4) finally, water molecules and chloride anions 
were added, and the minimization process was reiterated. 

The GROMACS 3.3.1 program did not allow us define directly the deprotonized 
charge state for cystein. To define the required charge state, we modified the *.rtp files. 
We added a description for cystein in the deprotonized charge state. The charges on the 
atoms (according to Mulliken) were calculated using the semiempirical MINDO/3 method 
(Dewar, 1975). The calculation parameters were as follows. The total charge was -1, spin 
multiplicity was 1. Unlimited Hartree-Fock calculation was performed. 



266 Part 2
 

We did not calculate the binding energy for Zn2+ because it is expressed as the 
difference between two large values, the total energies of the entire system with Zn2+ and 
without it. This produces a serious error.  Instead, we calculated Zn2+ – protein interaction 
that includes Coulomb and van-der-Waals terms. We assume that interaction and binding 
energies differ by a constant. 

RESULTS AND DISCUSSION 

To validate the accuracy of our approach, we calculated the interaction energy of Zn2+ 
with the R175H mutant, which loses zinc at physiological temperature (Butler, Loh, 
2003). The table gives the calculated interaction energies Etotal = ECoulomb + Evan-der-
Waals of Zn2+ with wild-type protein and mutants in the deprotonized cystein charge 
states of protein. 

Table 1. The interaction energy between Zn2+ with wild-type and mutant protein  
Name ECoulomb(kJ/mol) Evan-der-Waals(kJ/mol) Etotal (kJ/mol) 

Wild -1328.99 136.61 -1192.38 
R175H -1319.38 137.14 -1182.24 
G245C

1 -1333.24 139.99 -1193.25 
G245C

2 -1338.12 143.14 -1194.98 
1– Zinc is placed at the position where it interacts with the wild-type site.  
2– Zinc is placed at the position where it interacts with the novel site.  

 
As expected for the R175H mutant, the interaction energy for the Zn2+ was weaker. 

This is consistent with the experimental data for zinc loss upon this mutation.  
As the table shows, the interaction energies of Zn2+ with wild-type site and novel site 

for the G245C mutant are comparable in their values. This supports our idea that the 
novel site for the G245C mutant is functionally competent. Impaired function of the p53 
G245C mutant may be a result of the competition of these sites for Zn2+. 

The mutation G245C was found in families with the Li-Fraumeni syndrome (Malkin 
et al., 1990). From analysis of the functional significance of this germline mutation, it was 
concluded that malignant cells lose tumor-suppressor activity (Frebourg, 1996). Our 
results suggest a molecular mechanism for the effect of the G245C substitution based on 
competition between normal and extra sites for Zn2+ binding. 

It should be noted that our approach to the modeling of the interaction of the metal ion – 
protein complex using the GROMACS package is the first approximation. Approaches 
relying on combined quantum chemistry with molecular mechanics such as QM-MM 
would hopefully provide further insights. 
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SUMMARY 

Motivation: Identification of DNA-binding sites on DNA-binding proteins is important 
for functional annotation. Experimental determination of the structure of a protein-DNA 
complex is an expensive process. Reliable computational methods that utilize the sequence 
of a DNA-binding protein to predict its DNA-binding interface are needed. 

Results: We present an application of three machine learning methods: support vector 
machine, kernel logistic regression, and penalized logistic regression to predict DNA-
binding sites on a DNA-binding protein using its amino acid sequence as an input. 
Prediction is performed using either single sequence or a profile of evolutionary 
conservation. The performance of our predictors is better than that of other existing 
sequence-based methods. The outputs of all three individual methods are combined to 
obtain a consensus prediction. This further improves performance and results in accuracy of 
82.4 %, sensitivity of 84.9 % and specificity of 83.1 % for the strict consensus prediction. 

Availability:  http://lcg.rit.albany.edu/dp-bind. 

INTRODUCTION 

A reliable identification of DNA-binding sites on DNA-binding proteins is important 
for in silico modeling of protein-DNA interactions and functional annotation. 
Identification of DNA-binding sites is relatively straightforward if the structure of a 
protein-DNA complex is known. However, solving the structure of a protein-DNA 
complex is a very complicated and time-consuming process. Several computational 
methods that use experimentally solved unbound structure of a DNA-binding protein to 
identify DNA-binding interface based on the electrostatic potential and the shape of 
molecular surface have been developed (Jones et al., 2003; Tsuchiya et al., 2004). 
However, these methods cannot be used if experimentally determined protein structure is 
not available. An alternative to the structure-based prediction is a sequence-based 
prediction. In this work, we apply a combination of three supervised pattern recognition 
methods to improve the prediction of DNA-binding sites in a DNA-binding protein using 
its amino acid sequence as the only input.  
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METHODS AND ALGORITHMS 

Dataset of protein-DNA complexes. We used a non-redundant set of 62 
experimentally solved protein-DNA complexes that were utilized previously to develop 
DBS-PRED (Ahmad et al., 2004) and DBS-PSSM (Ahmad, Sarai, 2005). We label an 
amino acid residue in a protein chain as DNA-binding if the distance from at least one of 
its heavy atoms (atoms other than hydrogen) to any heavy atom in DNA is shorter than 
the cutoff distance of 4.5Å. In order to balance the number of examples between binding 
and non-binding residues, for each protein chain we randomly sampled without 
replacement the same number of non-binding residues as that of the DNA-binding ones. 

SEQUENCE ENCODING 

In order to represent the input protein sequence by a numerical feature vector, we 
used two types of sequence-based encoding and encoding based on PSI-BLAST 
(Altschul et al., 1997) position specific scoring matrix (PSSM). In the first type of 
sequence encoding, called binary encoding, the 20 amino acid types are represented by 
20 mutually orthogonal binary vectors of dimension 20 (Qian, Sejnowski, 1988). In the 
second type of sequence encoding, called BLOSUM62 encoding, each amino acid type 
is represented by a vector of dimension 20 using a corresponding row from the 
BLOSUM62 amino acid substitution matrix (Henikoff, Henikoff, 1992). In the case of 
PSSM-based encoding, each sequence position is encoded by a 20-dimensional vector 
obtained from a corresponding row in the PSSM (Ahmad, Sarai, 2005). In both the 
BLOSUM62 and PSSM encoding, we normalize all elements in the matrix between 0 
and 1 using the logistic function ( ) [ ]1 1 exp( )f x x= + − . In all three encoding methods, 
nearest sequential neighbors of a sequence position are encoded with a standard 
procedure (Qian, Sejnowski, 1988) using a sliding window of size 7.  

MACHINE LEARNING ALGORITHMS 

For our two-class (DNA-binding and non-binding residues) classification problem, we 
applied three machine learning algorithms: support vector machine (SVM) (Christianini, 
Shawe-Taylor, 2000), kernel logistic regression (KLR) (Zhu, Hastie, 2005), and penalized 
logistic regression (PLR) (le Cessie, van Houwelingen, 1992). SVM is a margin 
maximizing classifier that does a linear classification in the feature space, which 
corresponds to a non-linear classification in the original data space. The feature space is 
obtained by transforming data from the original data space with a kernel function. 
Similarly, KLR and PLR are also margin maximizing classifiers. For both SVM and KLR 
we used the Radial Basis Function (RBF) kernel. The SVM algorithm was implemented 
using the LIBSVM program (http://www.csie.ntu.edu.tw/~cjlin/libsvm). We implemented 
the KLR and PLR algorithms in C++. 

CONSENSUS PREDICTION 

Each of the three machine learning methods independently assigns a label (binding or 
non-binding) to each position in the input sequence. Then, these three labels can be used 
to produce a consensus prediction for each sequence position. We used two types of 
consensus. The first is majority consensus obtained by majority voting (at least two of 
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three labels are identical). The other is strict consensus which retains only positions with 
high-confidence predictions on which all three methods agree. 

EVALUATION OF THE PREDICTORS 

We used leave-one-out cross-validation to train and test each predictor. We used accuracy 
(ACC), sensitivity (SN), and specificity (SP) to assess the performance of each predictor: 
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+++
+
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+

= ,  
TNFP
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+

=  

 
where TP, FN, TN and FP is the number of true positives (correctly predicted binding 

residues), false negatives (binding residues predicted as non-binding), true negatives 
(correctly predicted non-binding residues), and false positives (non-binding residues 
predicted as binding), respectively.  

RESULTS AND DISCUSSION 

ACC, SN, and SP of the predictors are shown in Table 1. Fig. 1 shows the receiver 
operating characteristics (ROC) curve for each predictor. ROC curve is more informative 
than most other measures and allows one to compare the performance of different 
classifiers by looking at the curve and the area under the curve (AUC). Larger AUC 
indicates better performance. Analysis of the data presented in Table 1 and Fig. 1 leads to 
the following observations:  
1. All three individual sequence-based predictors have similar performance.  
2. All three individual PSSM-based predictors have a significantly better performance 

than the sequence-based ones, PSSM-based KLR having the highest classification 
accuracy of 79.2 %. 

3. The performance of PSSM-based KLR predictor (ACC of 79.2 %, SN of 76.4 %, SP 
of 82.0 %) is better than that of the other existing PSSM-based method for predicting 
DNA-binding sites, DBS-PSSM (ACC of 66.4 %, SN of 68.2 %, SP of 66.0 %).  

4. The strict consensus prediction improves both sequence-based and PSSM-based 
predictions. The majority consensus performs better than individual methods in the 
case of single sequence-based prediction when evolutionary information is not 
utilized. It also improves sensitivity of the PSSM-based prediction. 
A web server implementation of the predictors, called DP-BIND, is freely available at 

http://lcg.rit.albany.edu/dp-bind. It can be used for a high-confidence prediction of DNA-
binding sites in a DNA-binding protein when its experimentally solved structure is  
not available. 

Table 1. Measures of the performance of the predictors of DNA-binding sites (in percentage) 
Sequence-based 

BLOSUM62 encoding 
PSSM-based encoding Classifiers 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 
SVM 69.7±9.3 70.2±16.8 69.2±13.7 78.9±10.1 76.9±18.5 80.9±13.6 
KLR 68.9±7.9 66.7±15.4 71.0±11.7 79.2±10.0 76.4±18.5 82.0±12.4 
PLR 68.6±8.0 68.9±13.1 68.3±13.4 73.7±8.6 73.1±18.6 74.2±12.9 
Majority consensus 70.5±8.8 71.3±9.8 72.0±11.4 78.9±10.1 81.3±10.5 80.1±13.4 
Strict consensus 73.0±9.4 73.4±10.7 74.8±13.3 82.4±10.8 84.9±11.0 83.1±13.3 
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Figure 1. Receiver operating characteristics (ROC) curves for predictors that use (a) BLOSUM62 
sequence-encoding and (b) PSSM-based encoding. 
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SUMMARY 

Motivation: Recognition of functional sites in proteins is a direct computational 
approach providing a better understanding of protein biological and biochemical 
functions. Use of information about the protein spatial structure broadens our 
understanding of the structural organization of the functional sites, providing their 
recognition in the most efficient and accurate manner. 

Results: We developed a new version for the PDBSite database that contains 3d 
templates of various protein functional sites (posttranslational modification, catalytic 
active, organic and inorganic ligand binding, protein-protein, protein-DNA and protein-
RNA interactions) and also a new version of the PDBSiteScan tool ensuring the 
recognition of functional sites using 3d templates and the creation of molecular protein-
ligand complexes relying on template based docking. The number of functional and drug 
binding sites stored in PDBSite was considerably increased, also, PDBSite was integrated 
with the other established molecular-biological databases. 

Availability: http://wwwmgs.bionet.nsc.ru/mgs/gnw/pdbsite/, http://wwwmgs.bionet. 
nsc.ru/mgs/systems/fastprot/pdbsitescan.html. 

INTRODUCTION 

Data on the protein 3d structure offer unprecedented advantages for studying the 
structural features of functional sites, the molecular mechanism underlying their function 
and, what is more, lends credibility to functional site predictions. Recently, many 
software tools have been developed for predicting protein functional sites. The tools aid 
functional site recognition in protein 3d structure based on computed chemical properties 
(Shehadi et al., 2005), as well as on databases containing structural data on active site and 
protein-ligand interactions (Laskowski et al., 2005a; Hendlich, 2003). There is now a 
repertoire of tools for the search of functional sites based on the detection of structural 
similarity to related proteins of known functions (Jones et al., 2003). Approaches to 
protein function prediction that integrate methods for the recognition of functional sites 
both in the spatial and primary protein structures, also genomic analysis (Laskowski et al., 
2005b; Ko et al., 2005) are gaining deserved popularity. We have developed a database 
for the spatial structures of the protein functional sites, PDBSite (Ivanisenko et al., 2005). 
The PDBSiteScan program (Ivanisenko et al., 2004) uses the stored data to predict 
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posttranslational modification, catalytic active, organic and inorganic ligand binding, 
protein-protein, protein-DNA and protein-RNA interaction sites. Here, we implement 
novel, improved versions of PDBSite and PDBSiteScan. 

METHODS AND ALGORITHMS 

A brief description of the PDBSite structure and the PDBSiteScan program follows 
(for details, see Ivanisenko et al., 2004, 2005). PDBSite contains comprehensive 
structural and functional information on catalytically active centers of various enzymes, 
the sites of posttranslational protein modification, ion metal binding, binding 
organic/inorganic compounds, drug binding, protein-protein, protein-DNA and protein-
RNA interactions. The data were extracted from the PDB databank on the basis of 
information in the SITE field of PDB indicating the amino acid residues of the functional 
sites; the sites of protein-protein, protein-DNA and protein-RNA interactions were 
identified by analysis of the atomic coordinates in their heterocomplexes. The sites 
included the amino acid residues that are in contact with the ligand (protein, RNA or 
DNA). The coordinates of the N, C-alpha and C-atoms of the functional sites from the 
PDBSite database are utilized by the PDBSiteScan program as site templates for the 
recognition of the functional sites. The new PDBSiteScan version provides the derivation 
of protein-ligand complexes from template based docking. To implement docking, we 
developed an auxiliary database known as the PDBLigand library. The PDBLigand 
library contains atom coordinates of the low molecular ligands, proteins, DNA and RNA, 
which bind to the sites from PDBSite. Template based docking is done by transfer of the 
ligand together with the site-template during the structural alignment of the site-template 
to protein. The generated draft protein-ligand complex can be accepted as an 
approximation to the further more accurate docking or molecular dynamics analysis. 

RESULTS AND DISCUSSION 

The PDBSite database description. The PDBSite database consists of structural and 
functional information about various protein functional sites. A database entry contains 
data about a single functional site that occurs in a particular protein. The structural data 
from a single entry of the database serve as template for the prediction of the site in the 
protein spatial structure by the PDBSiteScan program. According to the Gene Ontology 
the PDBSite database contains the functional sites for proteins that are classified into 951 
various functions, 598 biological processes, and 165 cellular components. The total 
number of sites are distributed among the organisms as follows: Eukaryota – 13385, 
Bacteria – 7824, Archaea – 1743, Viruses – 1041. The templates are grouped into families 
according to the functional properties of the sites (see Table 1). Templates for the active 
sites are subdivided into 2 classes. The first class is composed of templates whose active 
site is not occupied by ligand and we called it “active, no ligand present”. The other class 
consists of active site complexed with ligand (substrate, metal ion, inhibitor and any other 
molecules) in the protein tertiary structure represented in the PDB database. We called it 
“active, ligand present”. The binding sites were divided also into 2 large classes: “single 
ligand present” and “multiple ligand present”. The multiple ligand present contains all the 
templates when several ligands are in contact with the site. 
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Table 1. Families of functional site templates and template number for each family 

Active site1 Alkali Earth Inorganic, organic and 
biochemical compounds 

Oxidoreductases 129/150 Sodium 188 950 families 5919 
Transferases 115/105 Potassium 87 Multiple ligand present 
Hydrolases 676/459 Rubidium 5 300 families 2288 
Lyases 103/150 Rare Earth Drug binding 
Isomerases 38/46 Cesium 14 56 families 678 
Ligases 6/3 Holmium 8 Protein-protein interaction 

Transition metal binding Samarium 4 8000 families 10934 
Zinc 724 Cerium 2 Protein-DNA interaction 
Copper 272 Europium 1 1500 families 2018 
Manganese 220 Lutetium 1 Protein-RNA interaction 
Iron 144 Other Metals 1678 families 2492 
Cadmium 122 Thallium 12 Posttranslational modification 
Nickel 67 Lead 5 Glycosylation 52 
Cobalt 49 Gallium 1 Phosphorylation 24 
Mercury 25 Non metal binding Myristylation 5 
Platinum 8 Chloride 173 Lipoylation 2 
Yttrium 2 Iodide 9 Cleavage 5 
Gold 1 Sulfur 3 Miscellaneous 4367 

Alkaline Earth Clusters   
Calcium 1059 Iron/Sulfur 159   
Magnesium 224 Iron/Sulfur/Ox

ygen hybrid 
cluster 

7   

Strontium 1 Iron-MO-
Sulfur 

4   

  HF OXO 
cluster HF5 

5   

  HF-OXO-
Phosphate 
cluster HF3 

1   

  HF-OXO-
Phosphate 
cluster PHF 

3   

1 The number of templates is denoted as no ligand present/ligand present. 
 
The PDBSite database is integrated with the Gene Ontology, UNIPROT, EMBL, PIR, 

TRANSFAC, ENSEMBL, INTERPRO, PFAM, SMART, PANTHER, PRINTS, TIGR, 
TIGRFAMS, HSSP, HAMAP, PRODOM, KEGG, KEGG compound, KEGG drug, 
PUBCHEM databases. The integration with the databases allows to obtain comprehensive 
information about the structural-functional-evolutionary features of proteins, their sites 
and also ligands. 

Application of the PDBSite database and the PDBSiteScan tool to drug design. Let 
us use Leptin as an example of how we applied the program resources are developed for 
the search of small molecule compounds that might be candidates for drug design. Leptin 
is a protein of great interest in medical research (Peelman et al., 2004). We analysed the 
potential capacity of biologically active molecular compounds from the PDB database to 
bind to leptin. Leptin is an adipocyte derived hormone that circulates in the serum in the 
free and bound form. Serum levels of leptin reflect the amount of energy stored in adipose 
tissue. Short-term energy disbalance, as well as serum levels of several cytokines and 
hormones, influence circulating leptin levels. Leptin acts by binding to specific receptors 
in the hypothalamus to alter the expression of several neuropeptides that regulate 
neuroendocrine function and energy intake and expenditure. Thus, leptin plays an 
important role in the pathogenesis of obesity and food intake disorders and it is thought to 
mediate the neuroendocrine response to food deprivation. 
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Figure 1. Potential leptin – ACE-ARG-ARG-LEU-ASN-FCL-NH peptide complex. Leptin is shown as 
surface molecule, the peptide is depicted, using ball and stick model. 

 
It was found that the ACE-ARG-ARG-LEU-ASN-FCL-NH peptide, developed for the 

inhibition of the cyclin-dependent kinase 2/cyclin complex (Kontopidis et al., 2003) is 
also capable of binding to leptin (Fig. 1). Peelman (Peelman et al., 2004) have 
demonstrated that mutation at positions 41, 115–118, 122 and 124 of leptin affect its 
binding to the membrane proximal cytokine receptor homology domain (CRH2). CRH2 is 
the domain of the leptin receptor. The binding site of ACE-ARG-ARG-LEU-ASN-FCL-
NH to leptin covers these positions. It can be thus suggested that the peptide can inhibit 
binding leptin to receptor. The current results may be a good start for further modification 
of the peptide with the aim of abolishing its binding capacity to cyclin and, moreover, to 
enhance its specific binding to leptin. 
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SUMMARY 

Motivation: Protein-protein and protein-ligands interactions play a central role in 
biochemical reactions, and understanding these processes is an important step in several 
fields of biomedical science and drug discovery. 

Results: Our research is conducted on a number of protein-protein interactions.  
We attempt in this report to show interactive links between virtual and experimental 

approaches in total pipeline “From gene to drug and using modern SPR technology (optical 
biosensor) for assessing the strengths of protein-protein and protein-ligand interactions. 

Availability: Preprint of this paper is available on request from the authors. 

INTRODUCTION 

Genome sequencing has provided fast growth of our knowledge about proteins present 
in different live organisms. However this data tell us rather small information about the 
function of proteins because they often work in complex assemblies of several 
macromolecules and small ligands. Such complexes play crucial roles in most cellular 
processes and widely diverse in their activity and size.  

Structural and functional description of protein-protein interactions is an important 
step toward understanding of biological processes. The applied area of such exploration is 
searching of new targets and creation new generation of highly effective and safety drugs. 

Currently there are about 35 000 known structures in PDB, among them about 12 000 
structures involving two or more protein chains. Within protein-protein complexes, two 
different types can be distinguished, homo- and hetero-complexes. It is known from PDB 
statistics that homo-complexes often exist as dimers, comparatively uncommon – as 
tetramers and very rare – as trimers or high multimeric complexes.  

The contact surfaces of the protein complexes have unique structure and properties, so 
they represent prospective targets for a new generation of drugs (Veselovsky, 2002). Currently 
many investigations were undertaken to find or design small molecules that block protein-
protein (protein-peptide) interactions (Pagliaro et al., 2004) and in particular protein 
dimerization (oligomerization). We were intrigue to investigate the mechanism of protein-
protein interactions and to apply the gained knowledge towards drug design. Our research is 
conducted on a number of protein-protein interactions. We attempt in this report to show 
interactive links between virtual and experimental approaches in total pipeline “From gene to 
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drug” (Fig. 1) (Veselovsky, 2003; Ivanov, 2005) and using modern SPR technology (optical 
biosensor) for assessing the strengths of protein-protein and protein-ligand interactions. 

 

Figure 1. Pipeline “From gene to drug”: integration of virtual and real experiments. 

METHODOLOGY 

Bioinformatics (in silico) approaches. Bioinformatics methods and molecular 
modeling software provide useful tools to help researchers elucidate protein interaction 
mechanisms by generating 3D models of intermolecular complexes and using scoring 
functions to select the most likely molecular complex hypothesis and discovering of lead 
candidates as inhibitors of protein-protein interaction. 

Experimental (in vitro) approaches. Several proteomics technologies have been 
developed and adapted to investigate protein-protein interactions. The yeast two-hybrid 
method allows the mapping of binary or pair-wise interactions, protein chips are suited to 
detect protein-protein, protein-lipid and protein-ligand interactions. Affinity capturing method 
based on the chip of optical biosensor (fishing) was coupled to mass spectrometry (MS) 
protein identification techniques for identification of partners in bimolecular or multimolecular 
protein complexes. Here, we will highlight the universal character of optical biosensor based 
on surface plasmon resonance technology (SPR) for solving different experimental tasks in 
analysis of protein-protein and protein-ligand interactions (McDonnell, 2001).  

IMPLEMENTATION 

Analysis of oligomerization of L-asparaginase. This enzyme is widely used in 
medical practice as therapeutic agents for treatment acute leukemia. However its 
application is accompanied by several side effects that caused by insufficient enzyme 
selectivity. The last one is defined by structure of the active site located between subunits 
of protein tetramer. Hence, the process of asparaginase oligomerization plays a key role in 
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formation of the active site and defines substrate specificity. In the present work we 
modeled spatial structure of L-asparaginase from Erwinia carotovora (Fig. 2) based on 
homology with L-asparaginase from Erwinia chrysanthemi and the comparative analysis 
of the interface between subunits was done.  

 

Figure 2. Experiments with L-asparaginase. (1) – 3D models of monomer and tetramer; (2) – tetramers 
immobilization on CM5 chip; (3) – sensogram of tetramers dissociation up  to monomer. 

We also developed experimental approach to study the process of oligomerization of 
this enzyme using optical biosensor Biacore 3000. Protein was immobilized on a surface 
of optical chip CM5 and tetramers dissociation up to monomeric condition has been 
registered. The subsequent restoration of enzyme tetramers was also carried out. 

HIV-1 protease (HIVp) dimerization. The main function of HIVp is the slicing viral 
preprotein on mature proteins. The enzyme also aggravates AIDS by damaging the host 
cell proteins. Many rather effective competitive inhibitors of HIVp are known and some 
of them are used now in AIDS therapy. Their systematic application as the drugs, 
however, inevitably promotes the generation of the viral strains that are resistant both to 
the inhibitor used and to most of its structural analogs. The drug-resistant protease 
modification is a result of the point mutation i.e. replacement of one amino acid residue in 
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both identical enzyme subunits. HIVp operates in homodimeric form, each of identical 
subunits being consisted of 99 amino acid residues. The main interface region in the 
homodimer represents the antiparallel four-strand β-sheet, which involves the C- and N-
terminal peptides of both subunits (Fig. 3).  

It is natural to assume that some ligand binding with any subunit can interfere with 
subunit dimerization. If the binding site coincides or overlaps with the interface region, all 
the mutations that diminish subunit affinity to a ligand will be also affect negatively inter-
subunit interactions. As a result the mutant protease will be form less stable and, 
consequently, less active dimers. At least two highly specialized and synchronous 
mutations are necessary to obtain a drug-resistant strain with high inter-subunit affinity. It 
is obvious that such mutations are highly improbable. 

Some years ago we have begun the project on designing inhibitors of HIVp dimerization 
that are not capable to stimulate the appearance of drug-resistant viral strains. There are few 
general strategies for the generation of synthetic molecules that directly modulate protein-
protein interactions. We have implemented de-novo design using molecular modeling 
software Sybyl (Tripos Inc.). Constructed structures of lead compounds (peptidomimetic 
inhibitors of HIVp dimerization) currently are under synthesis. It was necessary to develop 
biological assay for direct in vitro analysis of interactions of lead compounds with interface 
site of HIVp monomer. This assay was created based on optical biosensor Biacore 3000. 
HIVp was immobilized in dimeric form in two channels on optical chip CM5. Than protein 
dimers in channel 1 were stabilized by chemical cross-linking, while in channel 2 HIVp 
dimers were dissociated up to monomers. Assay trial experiments were carried out with 
known test peptide inhibitor (Fig. 4).  

It is visible, that inhibitor interacts only with monomeric form of HIVp, which 
indicate that molecules of inhibitor bind only to subunits interface. 

 

 
Figure 3. Analysis of interfaces between two subunits of HIVp. 
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Figure 4. In vitro assay for inhibitors of HIVp dimerization. 
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SUMMARY 

Motivation: According to the scanning model, 40S ribosomal subunits can either 
initiate translation at start AUG codon in a suboptimal context or scanthrough and initiate 
translation at downstream AUG(s). Functional significance of the usage of alternative 
translation start sites is still unknown.  

Results: Sequence organization of translation initiation signal of human mRNAs was 
analyzed. It was found that a suboptimal context of annotated start codon correlated with a 
significantly higher frequency of in-frame downstream AUG codons. We compared 
predicted subcellular localizations of annotated human proteins and their potential  
N-terminally truncated forms started from the nearest downstream in-frame AUG codons. It 
was found that the localization of full and N-truncated protein variants was often different: 
ca. 3.5 % of human genes tested could produce additional proteins with other targeting 
signals. It is likely that the in-frame downstream AUGs may be frequently utilized to 
synthesize additional proteins possessing new functional properties and such a translational 
polymorphism may serve as an important source of cellular and organelle proteomes. 

INTRODUCTION 

Human genome was assumed to contain ca. 20,000–25,000 protein coding genes. The 
number of proteins actually formed may be considerably higher because of alternative 
splicing. Another possible source of new protein forms is translational heterogeneity 
where several AUG codons within mRNAs may serve as alternative translation start sites 
(TSSs) to produce overlapping proteins displaying different properties (e.g., Bab et al., 
1999; Watanabe et al., 2001). The contribution of such a translational polymorphism to 
proteome complexity was not evaluated. 

According to the scanning model, 40S ribosomal subunits can either initiate 
translation at start AUG codon in a suboptimal context or miss it and initiate translation at 
downstream AUG(s). The initiation/scanthrough ratio depends on both the translation 
start site context and the features of downstream mRNA fragment (Kozak, 2002). 

It was found that a part of cellular mRNAs with start AUG codon lying in suboptimal 
context is relatively large as well as a part of mRNAs with AUG-containing  
5′ untranslated regions (5′-UTRs) (Rogozin et al., 2001). It is likely that at least some 
mRNAs with suboptimal start codon context may produce two or more functional 
polypeptides. To test this assumption we isolated a sample of human cDNAs and 
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compared predicted subcellular localizations of polypeptides started from either annotated 
suboptimal TSS or the nearest downstream in-frame AUG codons. 

METHODS 

32451 GenBank entries were obtained at http://www.ncbi.nlm.nih.gov/ using the 
following search fields: “Homo sapiens AND complete CDS”; Limits: “mRNA; Genomic 
DNA/RNA, excluding ESTs, STSs, GSS, working draft, and patents”. Of them, 27616 
sequences contained both the complete coding parts and 5′ UTRs shorter than 1000 
nucleotides in length. Subcellular localizations of proteins were evaluated by TargetP 
prediction progam (Emanuelsson et al., 2000) used with default parameters. 

RESULTS AND DISCUSSION 

Analysis of nucleotide frequencies in AUG context positions showed that 17 % of 
human mRNAs contained annotated start codon in a suboptimal context (i.e., they 
contained pyrimidines in position –3) and 44 % of human mRNAs contained AUG(s) 
within annotated 5′-UTRs. Despite a high uAUG content, the observed average uAUG 
frequency (8 AUGs per 1000 nucleotides) was lower than the expected value (12 AUGs 
per 1000 nucleotides; calculated as a product of frequencies of A, T, and G), which may 
reflect the selection against the presence of AUGs within 5′ UTR of eukaryotic mRNAs 
(Rogozin et al., 2001).  

We calculated the average frequencies of in-frame AUG codons at the CDS beginning 
(from 3rd to 9th codons) downstream of annotated start site. It was found that average 
AUG frequency downstream the TSS in optimal context (purine in pos. -3) was 
significantly lower than in mRNAs with a suboptimal start codon context (pyrimidine in 
pos. -3): 0.016 versus 0.025, respectively. The difference was not observed for 
downstream AUG triplets located out of the CDS frame (0.018 versus 0.017). This may 
mean that the in-frame AUGs located downstream of a “weak” TSS may be of functional 
importance. To test this assumption we prepared two samples of proteins: started either 
from annotated TSS in a suboptimal context or from the nearest downstream in-frame 
AUG codons. In total, subcellular localization of 3327 full and N-truncated proteins  
were compared. 

The results of prediction are shown in Table 1. One can see that N-truncated forms of 
many secreted polypeptides (18 %) lose their targets. It was expected since N-truncated 
polypeptides could lose their secretory leader peptides. However, 10 % of N-truncated 
proteins acquire sorting signals de novo (predicted localization was changed from “Other” 
to “MTP” or “SP”) and 2 % change their predicted subcellular locations (from 
mitochodria to secretory pathway or vice versa; detailed description is available by 
request). It may mean that a substantial part of human mRNAs produce two (or more?) 
proteins each with a specific subcellular localization due to alternative translation. 

Alternative translation allows to generate two or more protein forms. It might 
represent an appropriate way to address proteins of the same function to different 
locations or generate protein forms with different functions (e.g., Bab et al., 1999; 
Watanabe et al., 2001). Note, that the ratio of full- and N-truncated protein variants may 
be tightly regulated through adjustment of the start codons contexts to control 
initiation/scanthrough ratio (Kozak, 2002) that may provide a unique mechanism of 
expression control. It was found that 30 % of the N-truncated proteins were targeted to 
other cellular compartments. Thus, ca. 12 % of human cDNA analyzed might encode  
N-truncated protein variants and ca. 3.5 % might encode additional protein variants 
targeted to other subcellular compartments.  
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According to recent evaluations, human genome contains as many as 20,000–25,000 
genes (International human genome sequencing consortium, 2004). Of them, about 3000 
genes might encode additional protein variants due to the translational polymorphism. 
Such a mechanism could make an important contribution to human cellular and  
organelle proteomes.  

Table 1. Subcellular localization of human annotated proteins and their putative N-truncated variants (%) 
predicted with TargetP program (Emanuelsson et al., 2000)* 

Annotated N-truncated 
Location Size of fraction MTP SP Others 

MTP 13 3 1 9 
SP 17 1 7 9 

Other 70 5 5 60 
Total 100 9 13 78 

* MTP, mitochondria targeting peptide; SP, secretory peptide. 
 
Recent experimental evaluation showed that many eukaryotic genes yield transcript(s) 

that translate into several, and often very numerous families of polypeptide species 
(Kettman et al., 2002). Further experimental and theoretical estimations should be done to 
prove the role of alternative translation in generation of new functional forms of 
eukaryotic proteins. 
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SUMMARY  

Motivations: Because of experimental difficulties with characterization of membrane – 
protein interactions, development of molecular modeling approaches is a field of especial 
interest. To understand how the membrane binding occurs on molecular level and what 
structural features are responsible for the strength of binding, we applied a new algorithm, 
combining molecular dynamics (MD) simulations in water followed by Monte-Carlo 
(MC) search in implicit membrane,  to particular biological objects – two homologous 
cardiotoxins (CTs), CTI and CTII, from snake venom. 

Results: MD simulations of quite structurally rigid molecules of toxins show that CTs 
differ significantly in structural stability of their loops I and II. 

In order to assess the mode of membrane binding for different CTs, their NMR- and 
MD-derived models were futher employed in MC search with implicit membrane. The 
results obtained reveal the exclusive role of a charged residue in loop II and minor local 
differences in structure of toxins in their mode of membrane binding.   

It is proposed that a long-living water molecule found in the loop II of CT I may play 
a role in regulating the lipid binding mode of CTs. 

INTRODUCTION 

A large number of protein molecules are produced by cell either for own cytoplasmic 
membrane or for interaction with other ones. From the latest – a fair amount of toxins and 
all of them should have certain adaptive features for efficient overcoming of membrane 
barrier to damage the cell. One of the interesting toxins’ groups is β-structured cardiotoxins 
from snake venom. CTs belong to the family of the “three-finger” proteins whose fold 
consists of three β-stranded “finger-shaped” loops protruding from a globular core with four 
disulfide bridges. Despite the similarity of their spatial models and high level of sequence 
homology, CTs are characterized by a variety of biological activities and essentially differ 
in cytotoxicity (Kumar et al., 1997)). It is established now that CTs have unspecific 
cytolytic effect but little is known about the mode of toxins action on membranes.  

Structural and evolutionary comparisons among the CTs family indicated that the 
major structural plasticity accompanied with the hypervariable amino acid composition is 
present at the tips of the loops I and II. Also, in a number of three-dimensional (3D) 
models of CTs a long-living water molecule was found to be tightly hydrogen bonded to 
the residues of loop II (Sue et al., 2001). This loop has been proposed to be the most 
important cytolytic domain. CTs have been divided into P- and S-types, depending on the 
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presence of either Pro31 or Ser29 residues at the tip of loop II. It was found that the  
P-type CTs interact with bilayers stronger than those of the S-type (Chien et al., 1994; 
Dubovskii et al., 2005).  

Based on NMR data in solution and DPC micelles, spatial structures of both types of 
CTs, isolated from the same cobra (Naja oxiana), CT I (S-type) and CT II (P-type), were 
established in our laboratory. It was found that they are similar. Moreover, the bound 
water molecules were identified in their loop II. At the same time, toxins show different 
degree of cytolytic activity (Feofanov et al., 2004). 

It is suggested that the subtle conformational differences in loops extremities as well as 
possible participation of the bound water may define effectiveness of membrane binding of 
CTs. Difficulties in getting of such delicate structural information via experiments, make the 
molecular modeling approaches especially actual. To understand the structural features that 
may promote the differences in mode of membrane binding, we performed MD and MC 
simulations of both toxins, respectively in water and in implicit membrane.  

METHODS 

MD in water was used to explore conformational possibilities of CTs as well as to find 
reliable starting structures for subsequent modeling of CTs binding to membrane using 
MC conformational search in water-membrane environment.  

The spatial models of CT I and CT II determined by NMR spectroscopy in aqueous 
solution were used as starting structures. Three MD trajectories (~10–22 ns) were 
obtained for each toxin. In each case stepwise energy minimization and linear heating of 
the system were preceding the collection run. MD calculations and data processing were 
performed using the GROMACS v3.1.4 software and a set of original programs. Several 
MD-conformers as well as experimentally determined 3D models of CTs were used as 
starting conformations in MC simulations with implicit three-layer membrane model 
(water–cyclohexane–water). Previously, we have designed a model of the implicit 
membrane in which the solvent effect was established by the addition of a special term 
based on the use of empirical atomic solvation parameters incorporated into the potential 
energy function of a protein in “vacuum” (Efremov et al., 2004). The starting 
conformations were arbitrarily placed in water, and several successive MC calculations 
(3–5 x103 steps each) were carried out with sampling of 1–2 randomly chosen dihedral 
angles. Resulting low-energy states in the range of  10 kcal/mol from the minimal energy 
state were analyzed. Calculations were performed using the FANMEM program  
(a modified version of the FANTOM package). 

RESULTS 

Analysis of MD data revealed differences in the conformational lability of toxins loop 
I-II regions. The structure of the loop I of CT II was found to be more stable than that of 
CT I. On the contrary, dynamic features of CT II may be mainly characterized in terms of 
structural flexibility of the loop II: some families of MD-conformers differed markedly by 
conformation of this protein part.  

A single water molecule was found to be tightly hydrogen bonded to the following 
sites of CT I: M26:NH, D29:O (or OD1, OD2), and I32:O. A number of such waters with 
long residence time (more than nanosecond) were observed in MD simulations. The water 
molecules bind preferentially in this site, and very rare – in other positions of loop II. To 
the contrary, multiple binding sites for waters were detected in CT II. Moreover, in a large 
majority of accumulated MD conformers no bound waters were found in this site.  
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Analysis of MC data shows that the geometry and the depth of CTs’ insertion are 
determined by the location of hydrophobic loop’s residues (which form apolar surface 
like a “bottom”) relative to the positively charged conservative residues flanking  the ends 
of loops I-III. Regardless of the starting structures, CT II inserts into bilayer with the 
hydrophobic extremities of its loops I-III. In case of CT I the mode of binding (via one, 
two or all three loops) is defined by the conformation of loop II. More precisely, this is 
determined by the location of the side chain of D29 with respect to the hydrophobic 
stretch formed by the loop’s residues. In the low energy states this residue is always 
placed either on the membrane interface or in water. 

DISCUSSION 

Recent studies have shed some light on the structure-activity relationships of  CTs. 
Thus, it has been revealed that the hydrophobic tips of loops I-III represent an important 
functional motif for binding of CTs to lipid bilayers. Indeed, the results of MC 
simulations have demonstrated that for efficient penetration into the membrane, the 
molecule must be able to form a continuous “hydrophobic bottom”. It was proposed that 
the membrane binding is correlated with the ability of loop II to adopt a Ω-shaped 
conformation. This promotes formation of a single hydrophobic path (“bottom”) by the 
loops I-III. Thus, for strong binding with membrane the loop II of CTs must contain 
mainly apolar residues. Also, it should have some features constraining its conformational 
mobility  to favor the “right” conformation of this loop on the membrane interface. 
Indeed, the loop II of CT II is quite hydrophobic and has residue P30 (like other 
representatives of the P-type CTs) at its tip. Finding the bound waters among several P-
type CTs suggests that this proline residue should play an important role in formation of 
the water binding Ω-shaped loop II. For the P-type toxin, CT II, effectiveness of its 
membrane binding was confirmed by a series of MC searches starting from several 
distinct conformational states founded in MD.  

As shown from MC data analysis, the presence of charged residue D29 in the loop II 
of CT I substantially confines a number of states that may realize the hydrophobic stretch. 
As a consequence, the mode of membrane binding via one or two loops appeared among 
the low-energy states of CT I.   

Recent NMR studies of CTI revealed the presence of a bound water molecule located 
near the tip of loop II and its absence in aqueous and micellar environment, respectively. 
The results of MD simulations of CT1 are completely consistent with the experimentally 
derived information. Moreover, the water binding site identified with the two independent 
techniques is identical. 

It seems that the absence of Pro30 can make this loop too flexible. But the additional 
hydrogen bonds holding water molecules near the residues M26, D29, and I32 make the 
structure of loop II more rigid, thus avoiding significant conformational changes. Indeed, 
as seen from MD data, the loop II of CT I was less mobile as compared with that of CT II, 
where bound water molecules were observed much rarely. Comparison of the two NMR-
derived 3D models of CT I, in solution and in membrane-like environment (DPC 
micelles), reveals only one substantial difference between the structures – namely, the 
conformation of the tip of loop II and, as consequence, opposite orientations of side 
chains of D29. Note, that  the NMR-structure in DPC micelle  does not contain a water 
binding site. The geometry of binding of such NMR-structure was similar to that of CT II: 
all three loops interact with the bilayer.  

MC simulations with implicit membrane suggest the role of this particular 
conformation of loop II. Probably, it provides favorable orientation of the charged group 
of D29: away from the “hydrophobic bottom” formed by the extremities of loops I-III. 
We hypothesize that preserving of the definite loop II conformation through the binding 
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of water molecule favors  its conformational “switching” into the “right” conformation 
(accompanied with the release of water) on the water-membrane interface.   
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SUMMARY 

Motivation: The quality of protein sequences alignment is a similarity between the 
alignment and the “golden standard” alignment reflecting the evolutionary history. The 
quality of algorithmically obtained alignment is crucial for many bioinformatics tasks.  

Two main measures of alignment quality are accuracy, i.e. part of correctly restored 
positions of the golden standard alignment, and confidence, i.e. part of positions of the 
algorithmic alignments that belong to the golden standard alignment. The measures often 
are contradictory, i.e. the parameters optimizing one of the measures can result in low 
values of another.  

Results: We have performed detailed investigation of accuracy and confidence of 
alignments obtained by different methods with different values of parameters. It was 
shown that the methods exploiting information about the secondary structure admit the 
simultaneous optimization of alignment accuracy and confidence with the same 
parameters values. This contrasts with the behavior of alignment accuracy/confidence for 
classic Smith-Waterman method.  

INTRODUCTION 

Pair-wise alignment of amino acid sequences is a core of many bioinformatics methods. 
The ideal goal of all alignment algorithms is to find a biologically correct alignment reflecting 
the evolutionary history of homologous proteins (Sunyaev et al., 2004); i.e. aligned positions 
have to correspond to the same position of their common ancestor. The “quality” of an 
algorithmic alignment of amino acid sequences (i.e., its similarity to the biologically correct 
alignment) is critical for many applications, e.g. homology modeling, database homology 
search, protein domains analysis, etc. Biologically correct alignment is unknown, thus to 
measure the alignment quality one has to use an approximation of the biologically correct 
alignment as the “golden standard”. Since the tertiary structure of proteins is much more 
conservative than their sequences, we use the alignments obtained by superimposing the 
protein spatial structures as a “golden standard”. Alignment quality can be described by two 
complementary measures: accuracy (a number of identically aligned positions in algorithmic 
and reference alignment divided by total number of positions aligned in algorithmic 
alignment) and confidence (a number of identically aligned positions in the algorithmic and 
reference alignment divided by total number of positions aligned in the reference alignment).  
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The quality of algorithmic alignments crucially depends on the similarity of the sequences 
to be compared. For instance, the accuracy of the Smith-Waterman (SW) algorithm is 84 % 
when the protein identity (i.e., the portion of identical positions in two proteins) is no less than 
30 %; and if the identity is below 30 %, the alignment accuracy is about 30 % (Sunyaev et al., 
2004). The rapid approximate alignment algorithms, such as BLAST and FASTA, are even 
less accurate. To improve the accuracy of algorithmic alignments one can use combined 
methods taking into account both sequences and the (predicted) secondary structures. E.g. we 
have proposed the method STRUSWER (Litvinov et al., 2006) algorithm, which utilizes an 
additional bonus for matching identical elements of secondary structures; secondary structures 
can be determined experimentally or theoretically. Another method of this type is the 
Wallqvist-Fukunishi-Murphy-Fadel-Levy algorithm (WFMFL) (Wallqvist et al., 2000). 

The optimal values of parameters depending on the protein sequence identity were 
found for all above algorithms. However, the two measures of alignment quality usually 
lead to different values of parameters. E.g. it is common knowledge that the alignment 
confidence is more essential for the database search, but the parameter values optimizing the 
confidence results in very low values of the accuracy.  

The aim of the presented work was detailed investigation of the dependence of 
alignment quality on the algorithm parameters. We show that unlike the classic alignment 
algorithms (Smith-Waterman, etc) the secondary structure based methods allow 
simultaneous optimization of accuracy and confidence. 

MATERIALS AND METHODS 

Secondary structure. To predict the secondary structure we have used the PSIPRED 
program (Jones, 1999). The data presented below were obtained with the full version 
(prediction based on preliminary homology search) and the deterministic representation of 
the prediction (each residue is assigned with one of three letters: H (helix), E (beta) and L 
(loop). The other modes of the PSIPRED program as well as usage of experimentally 
obtained secondary structures from the DSSP database lead to the similar results.  

Golden standard  alignments. As a golden standard, we used manually verified structure 
alignments from the BAliBase (Bahr et al., 2001) protein structure database, as a source of 
“golden standard” alignments. We have used alignments from BAliBase Reference 1, the 
sequence identity level for the Reference is mainly 10–50 %. The test set was consisted of all 
protein pairs meeting following condition: both proteins belong to the same multiple 
alignment of BAliBase’s Reference 1 and their 3D-structures are known.  

Evaluation of the alignment quality. To compare two alignments (algorithmic and golden 
standard ones) and to estimate the agreement between them, we used two measures, accuracy 
and confidence. The alignment accuracy (Acc) was defined as a ratio of the number of 
positions (I) aligned similarly in the reference and algorithmic alignments to the number of 
aligned positions in the reference alignment (G): Acc = I/G. 

The alignment confidence (Conf) was defined as a ratio of the number of positions 
aligned similarly in the reference and algorithmic alignments to the number of aligned 
positions in the algorithmic alignment (A): Conf = I/A. 

Alignment algorithms utilizing the secondary structure data. We have tested two 
such algorithms, our algorithm STRUSWER (Litvinov et al., 2006) and the algorithm of 
Wallqvist-Fukunishi-Murphy-Fadel-Levy (WFMFL) (Wallqvist et al., 2000). 
STRUSWER is a modification of the Smith-Waterman (SW) algorithm. The only 
difference is that the score of the matching of i-th amino acid residue of one sequence 
with the jth residue of the other involves an extra summand SBON*SS[i, j], where SBON 
is a parameter of the algorithm and SS[i, j] = 1 if the residues are assigned with the same 
secondary structure type and the type is H or E; otherwise and SS[i, j] = 0. SW algorithm 
corresponds to SBON = 0. 
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The WFMFL algorithm modifies the Smith-Waterman algorithm in a similar way, but 
the extra summand is determined by the predefined 3 × 3 matrix depending on secondary 
structure types of compared residue (Wallqvist et al., 2000).  

Optimization of the parameters of the program. Three algorithms were run for each pair 
of proteins from BAliBASE set and for each set of parameters: (1) SW algorithm (secondary 
structure disregarded, i.e. SBON = 0); (2) STRUSWER algorithm with the secondary 
structure predicted using the PSIPRED program;  (3) WFMFL alignment with the secondary 
structure predicted using the PSIPRED program. Each algorithm was implemented with 
different values of parameters; the following integer values of parameters were checked: Gap 
Opening Penalty (GOP): from 4 to 20, Gap elongation penalty (GEP) from 1 to 7; SBON: 
from 1 to 30, GOP from 4 to 20, and GEP from 1 to 7. Thus, for each protein pair we have 
constructed 17 × 7 of SW and WFMFL alignments and 30 × 17 × 7 STRUSWER alignments 
(parameter SBON is applicable only for STRUSWER). Each of the algorithmic alignments 
was compared with the corresponding golden standard alignment, to obtain its accuracy and 
confidence. Finally, the results obtained for all protein pairs were averaged to yield average 
values <Acc> = <I/G> and <Conf> = <I/A> for a given algorithm and a set of parameters. 

 

Figure 1. Full dataset. Accuracy/Confidence scatter-plots (left) and “trajectory” plots (right) for each method. 
Each point of the scatter-plot corresponds to a set of parameters GOP, GEP and SBON (the last for 
STRUSWER only). Each point on “trajectory” plot corresponds to a value of main parameter (SBON for 
STRUSWER; GOP for SW and WFMFL). Other parameters are chosen to optimize the average accuracy. 
Start (the lowest value of the main parameter ) and finish (the greatest value) are marked with “S” and “F” 
respectively. X-axes presents the average accuracy and Y-axes presents the average confidence for a parameter 
set (see Materials and Methods). 
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RESULTS AND DISCUSSION 

In our previous work (Litvinov et al., 2006) we have shown that methods using 
information about secondary structure provide essentially more accurate alignments than 
the Smith-Waterman algorithm. This advantage is the more valuable the lower is the 
sequence identity (see Fig. 2). Here we present the detailed investigation of the 
dependence of accuracy and confidence of alignments on the parameters of alignment 
algorithms. The most striking result is possibility to achieve both maximal accuracy and 
almost maximal confidence for the same values of STRUSWER parameters (see Fig. 1). 
The maximal value of confidence (0.7) corresponds to “strong” values GOP = 17; GEP = 
6, SBON = 1 but it provides very low accuracy (0.47). Fortunately, “weak” parameters 
providing maximal value of accuracy (SBON = 8; GOP = 9; GEP = 1) correspond to the 
almost maximal value of the confidence (0.683 compared to 0.707). Fig. 1 (middle-right) 
shows how the accuracy depends on the SBON parameter. The method WFMFL 
(Wallqvist et al., 2000) demonstrate the similar behavior related to parameters GOP/GEP 
(see Fig. 1, bottom).  

The optimal values of parameters (leading to acc= 0.63; conf = 0.67) are those maximizing 
accuracy and they coincide with the values recommended in (Wallqvist et al., 2000). In 
contrast the Smith-Waterman method that has only two parameters, does not allow 
simultaneous optimization of accuracy and confidence (see Fig. 1, top). The behavior of the 
algorithms’ accuracy/confidence is essentially the same if we restrict ourselves with low-
homology protein pairs (see Fig. 2). The optimal parameter values are almost the same. 

 

Figure 2. Accuracy/Confidence plots (see Fig. 1) for proteins with sequence  
similarity less than 30 %.  
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SUMMARY 

Motivation: More than 1 % of genes in genomes code enzymes with glycosidase 
activities. On the basis of sequence similarity all known glycosidases have been classified 
into one hundred families. In many cases proteins of different families have a common 
evolution origin. It makes necessary to develop a hierarchical classification of 
glycosidase, which would reflect the degree of their relationship. The (β/α)8-barrel is the 
most common protein fold among glycosidases, that is why a classification of this group 
has the primary importance. 

Results: Taken together, pairwise sequence comparison, analysis of the order of 
sequence appearance in the BLAST search results, and phylogenetic tree topology allow 
us to distinguish several subfamilies in a glycosidase family. Iterated BLAST screening 
and comparison of 3D structures allow to reveal relationships between members of 
different families. Based on our original results and published data of other authors, we 
have developed a hierarchical classification of the (β/α)8-barrel glycoside hydrolase 
catalytic domains. 

INTRODUCTION 

Glycoside hydrolases or glycosidases [EC 3.2.1.-] are a widespread group of enzymes 
of significant biochemical, medical, and industrial importance that hydrolyze the 
glycosidic bonds between two carbohydrates or between a carbohydrate and an aglycone 
moiety. A large multiplicity of these enzymes is a consequence of the extensive variety of 
their natural substrates: di-, oligo-, and polysaccharides. The traditional nomenclature of 
glycosidases (IUBMB) is based on their substrate specificity and occasionally on the 
molecular mechanism of their action; such a classification, however, does not reflect the 
structural features and evolutionary relationships of these enzymes, and it is not 
appropriate for enzymes that act on several substrates. 

Accumulation of glycosidase sequences in databases has allowed to propose a 
sequence-based classification of glycoside hydrolases (Henrissat, 1991). This 
classification is regularly updated and now it is available at the CAZy site 
(http://www.cazy.org/CAZY/fam/acc_GH.html). It covers about 30,000 sequences of 
glycosidases and their homologues, which are grouped into more than 100 families. The 
molecular mechanism of their action (with inverting or retaining of the anomeric 
configuration) is conserved among members of a certain family. A careful examination of 
amino acid sequences and the tertiary protein structures allows to show the evolutionary 
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relationships among many glycosidase families. The relative families, having the same 
catalytic mechanism, were proposed to be grouped into clans (Henrissat, Bairoch, 1996). 
Currently, 14 clans (GH-A – GH-N) are described, and in total they contain 46 families. The 
largest of them (clan GH-A) includes 17 families; the others consist of 2 or 3 families each. 

However, two different clans have never been merged in the CAZy classification, even 
when their significant similarity has been established. Moreover, relationships between 
glycosidases appear to be more complex: some glycosidases having different mechanisms 
of hydrolyzing reaction have been shown to be homologous. For example, we have 
described the furanosidase (or β-fructosidase) superfamily that includes clans GH-F 
(inverting glycosidases) and GH-J (retaining glycosidases), as well as the GHLP (COG2152 
or DUF377) family of enzymatically-uncharacterized proteins (Naumoff, 2001). 

Several CAZy families appear to present two drawbacks: (i) they are very large (up to 
4,000 members in the case of GH13 family) and (ii) they contain enzymes that are poly-
specific. Thus, it could be expedient to divide these large families into smaller clusters  
(= subfamilies) in order to better qualify the relationship between homologous 
glycosidases and better predict their substrate specificity. We have distinguished several 
subfamilies in the furanosidase superfamily (Naumoff, 2001). 

The TIM-barrel, which has eight β/α motifs folded into a barrel structure, is one of the 
most usual protein folds (Nagano et al., 2001). A common origin of all (β/α)8-barrel 
domains has been proposed. According to this hypothesis, all of them have evolved from 
an ancestral (β/α)4-half-barrel by a tandem gene duplication, followed by a fusion and 
diversification (Lang et al., 2000). About 50 % of known glycosidases have (β/α)8-barrel 
fold of their catalytic domains (Rigden et al., 2003). They belong to four clans (GH-A, 
GH-D, GH-H, and GH-K), as well as to several other families, those have not been 
assigned to any clan. 

In the present communication, we summarize data on the relationship of different 
(β/α)8-barrel glycosidases and propose for them a hierarchical classification. 

METHODS 

Protein sequences were retrieved from the NCBI database. Protein family analysis was 
performed using standard methods (Naumoff, 2006). Particularly, the phylogenetic trees 
were built using the Neighbor-Joining and Maximum Parsimony algorithms (PHYLIP 
package). Interfamily relationships were established by PSI-BLAST searches, using several 
most divergent representatives from each analyzed family. The number of iterations needed 
to reach a family member using the selected representative of a given family was considered 
as a degree of sequence similarity for two corresponding families. For the more details of 
interfamily comparison methods check our recent paper (Naumoff, 2005). 

RESULTS AND DISCUSSION 

Melibiases or α-galactosidases [E.C. 3.2.1.22] are glycosidases that cleave, with 
overall retention of the anomeric configuration, the terminal non-reducing α-D-galactose 
residues in α-D-galactosides, including galactose oligosaccharides, galactomannans, and 
galactolipids. The majority of known α-galactosidases have (β/α)8-barrel fold of the 
catalytic domain and belong to GH27 and GH36 families, which form clan GH-D. We 
have performed sequence analysis of all proteins from this clan. Subfamily structure was 
determined using pairwise sequence comparison (> 30 % of identity), analysis of the 
order of sequence appearance in the BLAST search results, and phylogenetic tree 
topology (monophyletic status). We distinguished three and four main subfamilies in 
GH27 and GH36 family, respectively. 
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Analysis of the PSI-BLAST search results suggests approximately the same 
evolutionary distance between GH27 and GH36 family proteins, and between them and 
members of GH31 family. This allows us to group these three families into the α-
galactosidase superfamily. The phylogenetic analysis shows that GH27 and GH31 
families are most probably monophyletic groups, but GH36 family has a polyphyletic 
origin. We propose to consider four subfamilies of GH36 family as four different families 
of glycosidases (GH36A-GH36D) within the α-galactosidase superfamily. 

Iterated screening of the database by PSI-BLAST revealed distant sequence 
relationship of the α-galactosidase superfamily proteins with members of several other 
families, including GH13, GH97, and COG1649. GH13 is the largest family of glycoside 
hydrolases that contains enzymes of almost 30 different specificities comprising 
hydrolases, transferases, and isomerases. GH13 and two closely related families, GH70 
and GH77, compose GH-H clan (or the α-glucosidase superfamily). 

COG1649 (or DUF187) is a family of enzymatically-uncharacterized proteins. We 
distinguished four main subfamilies in this family. Iterated sequence analysis allowed us to 
reveal relationship of its members with proteins belonging to families GH13, GH20 (GH-K 
clan), GH31, and GH36. See the accompanying paper of A.Y. Kuznetsova and D.G. 
Naumoff for the more details of COG1649 analysis. 

GH97 is a recently established glycoside hydrolase family that includes only two 
proteins with known enzymatic activity. We distinguished five main subfamilies in this 
family. Iterated BLAST searches showed the highest similarity of GH97 family proteins to 
members of the α-galactosidase superfamily. More distant relationship was found with 
GH20 and GH13 family glycosidases, as well as with some members of COG0535. 
COG0535 is a group of enzymatically-uncharacterized proteins. It was annotated as a 
family of predicted Fe-S oxidoreductases, like the closest COG0641 (http://www.ncbi.nlm. 
nih.gov/COG/). Our BLAST searches showed, that both COG families are related to the 
radical SAM superfamily of Fe-S enzymes, having (β/α)8-barrel fold. 

3D-PSSM searches of the PDB database with several GH97 family proteins used as a 
query sequence yielded the highest level of 3D similarity with members of the α-galactosidase 
superfamily. Among other best hits we found representatives of several other glycoside 
hydrolase families: GH2 (GH-A clan), GH5 (GH-A), GH13 (GH-H), GH17 (GH-A), GH18 
(GH-K), and GH20 (GH-K), as well as some other enzymes with (β/α)8-barrel fold. 

Taken together, these data suggest a common evolutionary origin of glycosidase 
catalytic domains belonging to clans GH-A, GH-D, GH-H, and GH-K. Complementary 
results have been reported by several authors. Henrissat (1998) and Janeček (1998) found 
a distant sequence similarity of GH13 with GH31 and GH57 families, respectively. 
Imamura et al. (2001) proposed a common ancestor for family GH38 and GH57 glycoside 
hydrolases. Nagano et al. (2001) suggested an evolutionary relationship of GH-A clan 
with GH13 and GH14 families. A common origin of GH13, GH27, GH31, GH36, and 
GH66 families was proposed by Rigden (2002). Fold reconstruction methods allowed to 
predict a TIM-barrel type catalytic domain in GH29, GH44, GH50, GH71, GH84, GH85, 
and GH89 glycosidase families (Rigden et al., 2003). Moreover, GH50 family was 
suggested to be a common evolutionary ancestor of GH14 and GH42 families. 

Based on the CAZy two-level classification and taking into consideration the data 
mentioned above, as well as protein classifications at SCOP (http://scop.mrc-
lmb.cam.ac.uk/scop/) and Pfam (http://www.sanger.ac.uk/Software/Pfam/) sites, we 
propose a hierarchical classification of the TIM-barrel type glycoside hydrolases (Fig. 1). 
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Figure 1. Hierarchical classification of the TIM-barrel type glycoside hydrolases proposed in this work. 
Subfamily structure is not shown. Shaded rectangles correspond to hierarchical groups that include at 
least one representative with known tertiary structure. 
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SUMMARY 

Motivation: Protein family patterns bank Prof_Pat is a collection of the patterns of 
groups of related proteins, characterizing the position intervals conservative in aligned 
proteins, and flexible fast search program.  

Thus it is one of the numerous “secondary” banks, in which the information on the 
whole groups (families) of the related proteins, most typical and frequently unique 
features of this group is concentrated.  

When “secondary” bank is constructed, the following properties are very important: 
• the completeness of representation of prototype banks proteins, 
• the sensitivity and specificity of the analysis,  
• the actuality of the presented information. 

These features do convenient application of a database for the protein analysis that in 
turn, is a necessary condition of database existence. 

Results: We represent Prof_Pat as an updated, developing and improved tool for a 
prediction of function and distant similarity of proteins, satisfying all the listed conditions. 
Besides we offer variants of use of this database for the analysis of large groups of amino 
acid sequences. 

Availability: http://wwwmgs2.bionet.nsc.ru/mgs/programs/prof_pat/ Prof_Pat local 
version is available via ftp: ftp://ftp.ebi.ac.uk/pub/databases/prof_pat/ and ftp://ftp.bionet. 
nsc.ru/pub/biology/vector/prof_pat/.  

INTRODUCTION 

Now alongside with amino acid sequences databases, the general recognition and a 
wide circulation have received so-called “secondary” databases. These bases are used for 
the analysis of amino acid sequences with the purpose of a prediction of functions and 
related communications of coded proteins. Bank Prof_Pat created and supported in the 
SRC VB “Vector” is a “secondary” database too.  

METHODS AND ALGORITHMS 

Protein family patterns, the bank of these patterns Prof_Pat and flexible fast search 
program were created using original technology (Bachinsky et al., 2000). The version of 
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Prof_Pat 1.18, constructed on the basis of the UniProt 6th release, including the 48th release 
of the Swiss-Prot bank and 31th release of TrEMBL (Wu et al., 2006), contains patterns of 
138788 groups of related proteins including more than 1000000 amino acid sequences. 

IMPLEMENTATION AND RESULTS 

Prof_Pat was earlier showed to have as good completeness and variety of included 
proteins as the best world-known “secondary” banks. At the same time, its specificity and 
sensitivity is higher than those of other banks, and its search speed was 3–10 times higher. 
(Nizolenko et al., 2003). 

For example, from the 920.402 Swiss-Prot (rel. 42) and TrEMBL (rel. 25) sequences, 
that have the reference of Interpro, one of the largest and modern banks (Mulder et al., 
2003), in their description, only 4 ones were no recognised by Prof_Pat (rel.1.14) patterns. 
At the same time, 14185 sequences, that have no Interpro reference as well as any detailed 
description of a putative function for the protein, show very good similarity with well-
described Prof_Pat patterns. (Nizolenko et al., 2005b). 

As databases of primary amino acid sequences are continuously replenished, updating 
of “secondary” banks is very important. 

Prof_Pat is constantly updated database. The information on growth of this secondary 
base in parallel to growth of Swiss_Prot /TrEMBL volumes is submitted in Table 1. 

Table 1. The growth and development of Prof_Pat bank in parallel to growth of Swiss-Prot and TrEMBL 
volumes 

Prof_Pat 
release/data 

Swiss-Prot 
/TrEMBL 

release 

Full-length 
sequences in 
Swiss-Prot/ 
TrEMBL 

Sequences 
in Prof_Pat 

Patterns 
in 

Prof_Pat 

Proportion of the in 
Swiss-Prot/ TrEMBL 
full-length sequences 

having hits to Prof_Pat 
 1.1 1998-99 29/1 ~98000 52122 7083 0.57 
 1.6 Oct 2000 39/15 295932 166667 24692 0.59 
 1.7 Apr 2001 39/16 320511 181644 27187 0.65 
 1.8 Nov 2001 40/17,18 385437 217360 31613 0.66 
1.10 May 
2002 

40/20 475343 283765 41076 
0.69 

1.11 Jan 2003 40/21,22 556538 344429 50149 0.70 
1.14 Jan 2004 42/25 784262 509506 71619 0.74 
1.16 Dec 
2004 

44/27 1010596 676485 90506 
0.76 

1.17 Jul 2005 46/29 1219335 822781 106725 0.77 
1.18 Apr 2006 48/31 1634672 1084331 138788 0.79 

 
The completeness of representation of the prototype bank proteins and ability to 

distinguish sequences which have not entered into Pof_Pat are growing too. More than  
79 % of the full-length sequences in Swiss-Prot 48 + TrEMBL 31 have at least one hit to 
Prof_Pat patterns, whereas in 1998 - less then 60 %. 

Growth and updating of the database is accompanied by improvement of quality of 
predictions. The investigation of the amino acid sequences of open reading frames of the 
complete genome of Mycobacterium tuberculosis using the protein family pattern bank 
Prof_Pat carried in 2005 in comparison with 2000 is presented in Fig. 1.  

Salmonella typhi strain CT18 can be another example of successful Prof_Pat investigation 
of amino acid sequences, translated from complete genome. Of 4395 open reading frames of 
this microorganism, possible function or similarity with hypothetical proteins family were 
predicted by Prof_Pat 1.16 for 4246 (more then 96 %) with high significance level. 
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Figure 1. Investigation of Mycobacterium tuberculosis amino acid sequences with Protein Family 
Patterns Bank Prof_Pat carried in 2005 in comparison with 2000. 

Not only the quantity of distinguished sequences was increased. The results of 
predictions became more authentic, they are confirmed by investigation with other 
database such as Pfam and Interpro (Nizolenko et al., 2005a). 

CONCLUSION 

Expediency of use of bank Prof_Pat as an updated, developing and improved tool for a 
prediction of function and relationships of proteins was demonstrated again. It allows to 
get new information for assumption of structural and functional similarity for distinct 
proteins as well as for large groups of amino acid sequences. 
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SUMMARY 

Motivation: Membrane-active peptides play a crucial role in numerous cell processes, 
such as fusion, transport of therapeutic compounds, disturbance of integrity of 
membranes, and others. Many of them act as highly specific and efficient drugs and, 
therefore, attract growing interest for biomedical applications. Because of experimental 
difficulties with characterization of their spatial structure and mode of membrane binding, 
essential attention is given now to molecular modeling techniques.  

Results:The present work sums up our recent results on molecular dynamics (MD) 
simulations of binding of several membrane active (fusogenic, antimicrobial and cell 
penetrating) peptides (MAP) to hydrated lipid bilayers differing in length, saturation 
degree of acyl chains, chemical nature and/or charge of headgroups. The character of 
“membrane response” may significantly vary depending on the peptide type and it 
target membranes. However, a number of common phenomena in MAP-membrane 
interactions can be outlined. The mode of peptide binding to membrane correlates with 
a rate of membrane destabilization – deeper insertion of a peptide leads to the more 
prominent effect. The “membrane response” induced by a peptide may be caused by 
formation of specific peptide-lipid complexes. Relationships between character of 
interactions of peptides with membranes and the mechanism of their action are  
also discussed. 

INTRODUCTION 

Membrane-active peptides (MAP) represent a large class of compounds from either 
natural or synthetic source which possess a wide range of membrane activity often 
concerned with alteration of properties of the host membranes. It is significant that the 
functioning of such peripherally bound peptides is mediated by a number of factors: their 
conformation, the mode of membrane binding, pH, the phase condition and lipid 
composition of membrane.  

Another interesting aspect of MAPs’ action is specific reorganization of structural and 
dynamic properties of membrane (“membrane response”) induced by peptide insertion. 
Therefore, the understanding of the structure-function relationship for MAP represents an 
intriguing challenge in the field of structural biology. Apart from fundamental importance 
(studies of general principles of protein insertion, folding and stabilization in bilayer), 
solving the problem is invaluable in the optimization of these molecules' behavior for 
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pharmaceutical and biotechnological applications, such as the development and targeted 
delivery of drugs through membranes, the design of MAP with prescribed properties, 
gene therapy, and disease control. Unfortunately, studies of biological membrane-protein 
systems are very difficult because of their complexity.  

Possible solution of this problem is employment of different membrane mimic 
systems such as micelles of detergents, lipid vesicles and bilayers. However, experimental 
techniques often give only overall picture of behavior of a model peptide-membrane 
system, while in many cases molecular details of peptide-membrane interactions are 
missing. The development of molecular modeling approaches would be indispensable in 
avoiding these problems. Such methods have begun to be widely used in studies of 
protein-membrane interactions. Among them molecular dynamics (MD) of peptides and 
proteins in explicit membrane environments (lipid bilayers and micelles) is the most 
powerful one. This method permits investigation of the actions of membrane-active 
agents on the atomic level, including microscopic details of their interactions with lipids 
and detergents, changes in peptide structure during binding and specific “membrane 
response” induced by peptide insertion. 

Here, we present comparative MD simulations studies of binding of several MAPs to 
hydrated lipid bilayers. Among them are fusogenic (FP), antimicrobial (AMP) and cell 
penetrating peptides (CPP). The emphasis is made on detailed characterization of peptide-
lipid interactions and their role in membrane destabilization. To address this question MD 
simulations were performed in pure bilayers differing in length, saturation degree of acyl 
chains, chemical nature and/or charge of headgroups and lipid mixtures close in 
composition to real cell membranes (Table 1). 

 
Table 1. Simulated MAPs 

Peptide Type Sequence Initial conformation Bilayers 
Latarcin 2a 
(Ltc2a) 

AMP GLFGKLIKKFGRKAISY
AVKKARGKH 
 

α-helical, NMR in SDS 
micelles (2G9P) 

POPE200:POPG88, 
POPC114 :POPE114: 
CHOL60 

E5 FP GLFEAIAEFIEGGWEGL
IEG 

α-helical, NMR in DPC 
micelles 

DMPC128, DPPC128 

Penetratin 
(pAntp) 

CPP RQIKIWFQNRRMKWKK α-helical, NMR in 
water/TFE mixture 
(1KZ0) 

DOPS128, DOPC128 

METHODS 

Systems preparation. The model bilayers were constructed in such a way that their 
structural parameters (area per lipid molecule, bilayers thickness) corresponded to 
experimental data. The compositions of mixed bilayers were similar to those in cell 
membranes (human erythrocyte, E. coli). The systems were solvated by SPC water 
molecules and neutralized by adding the necessary counterions. All systems were 
subjected to energy relaxation via 5 × 104 steps of steepest descent minimization followed 
by heating from 5 K to the temperature of simulations during 50-ps MD run. Then the 
long-term collection MD runs were carried out. The final configurations of bilayers 
obtained in these calculations were further used in MD simulations of their complexes 
with peptides. 

Simulation details. All simulations were performed using the GROMACS 3.2.1 
(Lindahl et al., 2001) package and the GROMOS87 force field specially adopted for 
lipids (Van Gunsteren et al., 1987). Simulations were carried out with a time step of 2 fs, 
with imposed 3D periodic boundary conditions, in the NPT ensemble with isotropic 
pressure of 1 bar. Van der Waals interactions were truncated using the twin range 12/20 Å 
spherical cutoff function. Electrostatic interactions were treated in two different ways: by 
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use the same cutoff scheme and the PME algorithm (1.2 Å Fourier spacing). Previously it 
has been shown that the cutoff-based MD simulations of explicit bilayers may lead to 
serious computational artifacts only in a case of electrostatically heterogeneous systems 
like charged lipids and counterions (Polyansky et al., 2005). That is why to save a CPU-
time, MD simulations of zwitterionic membrane systems were carried out with the cutoff 
functions for electrostatic interactions. All components of the systems were coupled 
separately using the Berendsen thermostat to a temperature bath with a coupling constant 
of 0.1 ps. The simulation temperatures were chosen to ensure the liquid crystalline phase 
of lipid bilayers.  

Analysis of MD-trajectories. Analysis of MD trajectories was performed using 
original software developed by the authors and utilities supplied with the GROMACS 
package. The following parameters of the simulated systems were analyzed: bilayer 
structure (the area per lipid molecule (AL), the bilayer thickness (DPP), etc); peptide 
secondary structure; peptide-lipid interactions (energies of electrostatic and van der Waals 
interactions, long-living peptide-lipid contacts); 2D distribution of various structural and 
dynamic properties of bilayers. All these parameters were averaged over the equilibrium 
parts of corresponding MD trajectories.  

RESULTS AND DISCUSSION 

Long term simulations (~20–30 ns) of considered peptide-membrane systems permit 
delineation several similar effects of MAPs’ interactions with model bilayers. First, all 
peptides undergo the reorganization of their initial secondary structures. Thus, unlike the 
aqueous solution, the water-membrane interface significantly promotes structuring of the 
anchored amphiphilic peptide. It is interesting, that this effect is more prominent in a case 
of strongly amphiphilic molecules, like Ltc2a and E5, than in a case of slightly 
amphiphilic pAntp. Second, analysis of the accumulated MD trajectories reveals no 
essential alterations in global structural properties of the bilayers (AL, Dpp, etc) – the 
peptide-induced destabilization of the bilayer structure has a local character. Essential 
insight into the microscopic picture of the “membrane response” may be gained via 
detailed analysis of in-plane distributions of various bilayer characteristics (dynamical 
lipid fractions (see Fig. 1b), angles of lipid tails and heads to bilayer normal, surface 
hydrophobic/hydrophilic properties).  

These results reveal that peptides under study possess a prominent effect of 
destabilization of model membranes. The character of “membrane response” may 
significantly vary depending on the peptide type and it target membranes. However, a 
number of common phenomena in MAP-membrane interactions can be outlined. The 
mode of peptide binding to membrane correlates with a rate of membrane destabilization 
– deeper insertion of a peptide leads to the more prominent effect. During MD 
simulations peptides form long-living complexes with lipid heads (i.e. several peptide 
residues are associated with lipid head). Structure of such complexes depends on the 
peptide’s conformation, its amino acid composition and chemical nature of lipid heads 
(see Fig. 1c). Lipids associated with peptide significantly differ in structural and dynamic 
properties compared with the rest of the bilayer.  

Thus, the “membrane response” induced by the peptide may be caused by formation 
of specific peptide-lipid complexes. These observations open up novel intriguing 
opportunities for de novo design of MAPs with prescribed character of membrane 
destabilizations and/or selectivity to different target membranes. 
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Figure 1. Interactions of peptides with model bilayers. a– binding mode of peptide. Lipids are shown 
with sticks, peptides are given in ribbon representation. b – 2D distribution of fluctuations (RMSF) of 
lipid heads. Dark regions correspond to low RMSF values. The peptide backbones are shown with black 
crosses. c – examples of long-living complexes of peptide residues with lipid heads. Peptide residues and 
lipid heads are given in “stick” and “ball and stick” representations, respectively.  
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SUMMARY 

Motivation: Most molecular docking algorithms consider only flexibility of ligand 
molecules while receptor is held rigid. At the same time it becomes evident that receptor’s 
flexibility is indispensable for obtaining correct structures of protein-ligand complexes via 
docking simulations. 

Results: To study the effect of receptor flexibility we used the ATP – Ca-ATPase 
complex. In experimental structures of the complex ATP-analogues simultaneously 
interact with two active sites which are situated in different protein domains. In the apo-
form the distance between these sites is too large and standard docking protocols fail to 
reproduce the experimental structure. We used molecular dynamics simulations of 
nucleotide-binding part of Ca-ATPase to study its domain motions and generate a 
representative ensemble of the receptor conformations. This approach allowed correct 
prediction of the structure of the complex based on the apo-structure of the Ca-ATPase. 

Availability:  http://model.nmr.ru. 

INTRODUCTION 

Most docking algorithms incorporate ligand flexibility while keeping the protein rigid. 
But structural studies of ligand-protein associations indicate that these processes are often 
accompanied by conformational changes in protein structure. In many cases these changes 
are related to the protein side-chain conformations although main-chain motions of 
flexible loops are also observed. Moreover, for some proteins (e.g. ATP – Ca-ATPase 
complex (Toyoshima et al., 2004)) changes in receptor structure involve even relative 
domain motions. Such effects indicate the necessity of modeling the receptor’s flexibility 
in the docking procedure. 

Nowadays a lot of various approaches are applied to incorporate the flexibility of 
receptor into the docking algorithm. As a rule, all of them are aimed at collecting a 
representative ensemble of protein conformations. After this is done the standard docking 
algorithm of a flexible ligand to rigid receptor is performed for each of them. The ways of 
generating such ensemble may vary – from collecting different X-ray structures of the 
target protein and stochastic exploring its conformational space (sampling method based 
on bonds network, “rotamer libraries”) to taking snapshots of molecular dynamics (MD) 
simulations. However, the latter approach yet has very few examples (Cavasotto et al., 
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2005) of applications to investigate the influence of global domain motions on docking 
simulations. Our work is dedicated to implementation of MD simulations to sample 
global domain rearrangements and local side-chain motions of ATP-binding part of Ca-
ATPase as a target for ATP docking. 

METHODS 

MD of ATP-binding domain of Ca-ATPase was performed for 3 experimental models: 
1EUL (“open” apo-form), 1IWO (another “open” apo-form), and 1T5S (“closed” holo-form). 
The GROMACS program and the GROMOS96 force field (Berendsen et al., 1995) were 
used. Molecules with uncharged N- and C-termini were placed in rectangular boxes of a 
simple point charge (SPC) model of water molecules with edges of 10 Å. The three-
dimensional periodic boundary conditions were imposed. To relax the system we performed 
300 steepest descent iterations with fixed protein atoms followed by 300 conjugate-gradients 
steps with fixed backbone, and finally 300 conjugate gradients steps without constraints. Then 
the system was subjected to a 10 ps MD run in an NPT (constant pressure and temperature) 
ensemble with fixed protein atoms. Finally, it was heated from 5 to 300 K for 60 ps in an NVT 
(constant volume and temperature) ensemble. After that the production run was performed in 
an NPT ensemble at 300 K. Non-bonded interactions were truncated with the twin-range 
cutoff of 10/18 Å. The length of each MD trajectory exceeded 2 ns so as to allow detection of 
domain rearrangements. To characterize the relative domain orientation we introduced the 
interdomain angle Θ, determined as the angle between two vectors originating from the centre 
of the hinge region and pointing to the centres of the N- and P-domains. For the ATP docking 
experiments the snapshots of protein structure from the first 2 ns of each MD run were taken 
at 8 ps interval.  

To perform docking of ATP we used 8 high-resolution experimental structures of Ca-
ATPase available from the Protein Data Bank and a set of conformations from MD 
trajectories. To dock ATP into the ATP-binding domain of Ca-ATPase we used the GOLD 
2.0 (Jones et al., 1997) software with the scoring function “goldscore”. The docking sphere 
radius was 21 Å, the origin of this sphere was atom CD1 of Phe482. 60 runs of the docking 
procedure were performed for each receptor conformation. All ligands and water molecules 
were removed from the receptor structure prior to docking. To retrieve a correct 
conformation of ATP from a diverse set produced by docking we used our special ATP-
oriented ranking criterion. It is based on the analysis of ATP-protein interactions in a set of 
experimental structures of ATP-protein complexes. This criterion is based mainly on 
hydrophobic interactions of the adenine moiety of ATP with its protein environment. 

RESULTS AND DISCUSSION 

The conformation of the ligand in the N-domain was reproduced in all receptor structures 
crystallized with ATP-analogs (Table 1). Also, ATP conformation close to the experimental 
one was found for the apo-form 1IWO. However, docking failed to predict ATP poses in the 
N-domain for other apo-forms of the receptor. This indicates that docking may yield 
unsatisfactory results if the site geometry is not optimized for a particular ligand. Moreover, in 
the experimental models bound ATP-analogues interact simultaneously with active sites in N 
and P-domains. Mutual disposition of the latter ones corresponds to the interdomain angle Θ 
~111°. This was reproduced by docking for the receptor structures taken from complexes with 
ATP-analogues. But in the “open” forms of Ca-ATPase (corresponding to the values of Θ  
~125°-165°) the distance between these sites is approximately twice as large as the size of 
ATP molecule. That means that in such cases standard docking algorithms which consider 
receptor rigid do not allow successful prediction of ligand-receptor complex structure. 
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Table 1. Results ATP docking into experimental models of Ca-ATPase 

Rank of correct docking solution PDB 
code Ligand Angle Θ “Goldscore” ATP-criterion 

1VFP ACP 112° 1 1 
1T5T ADP 111° 1 1 
1T5S* ACP 111° 7 1 
1WPE ADP 111° 1 1 
1WPG ADP 157° 20 1 
1IWO* – 125° 33 11 
1XP5 – 155° – – 
1EUL* – 165° – – 
* For these models MD simulations were performed. 

 
To take into account flexibility of the receptor we used MD simulations to generate an 

ensemble of its conformational states starting from 3 different experimental models. In 
the calculated MD trajectories high-amplitude relative domain motions of type “closure” 
were detected which corresponds to available experimental structures of Ca-ATPase. 

For each trajectory it was shown that it is possible to obtain correct docking solutions 
for the N-domain site for nearly a half of the receptor conformations. Also it is possible to 
dock ATP to both active sites when the relative domain orientation is appropriate, namely 
it was found that such docking solutions can be obtained for MD-conformations, with the 
angle Θ < 120°. Such “closed” form was observed in each trajectory independently of the 
starting conformation. 

Proper scoring of the docking solutions needs a special consideration. Thus, docking 
yielded correct solutions for 6 experimental Ca-ATPase structures, but ranked them top 
only in 3 cases. To improve ranking we applied our ATP-criterion which ranked correct 
solution top in 5 cases and improved the rank of such solution in the remaining case. The 
results over all ATP poses for each MD trajectory were similar. Comparison with the 
experimental structure of the ATP – Ca-ATPase complex showed that among ~14000 
solutions only ~450 were correct predictions. The distribution of these correct solutions 
when ranked by ATP-criterion is considerably better than that ranked by the “goldscore” 
function, which is close to a random distribution (Fig. 1). 

 

Figure 1. Ranking of docking solutions by the “goldscore” function (gray) and by ATP-criterion (black) 
over all MD-conformations of the receptor (here are shown the results for 1EUL). The fraction of correct 
docking solutions (~ 450 in totals) is shown. 
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SUMMARY 

Motivation: Unlike many other families of enzymes, which catalyze the same overall 
reaction, aminoacyl-tRNA synthetases (aaRSs) are extremely heterogeneous in terms of 
primary sequence and subunit organization. For the most part aaRSs are negatively 
charged at physiological conditions, as are tRNA substrates. What are the driving forces 
that ensure an attraction between like-charged macromolecules? As may be inferred from 
multiple sequence alignments (MSA), concentration of the invariant charged residues in 
structural domains doesn’t correlate with contribution of the domains to formation of the 
electrostatic field at long distances.  

Results: In aaRSs family the subset of evolutionary non-conserved charged residues 
generates long-range electrostatic potential (EP) similar to the native one. We evaluate 
contribution of individual structural domains to the EP generated by native (NS), 
conservative (CS) and non-conservative subsets (NCS) of charged residues. For 
monomeric IleRS and heterodimeric PheRS we further analyzed the interplay between the 
domain functionality and their role in the field formation at long distances. 

INTRODUCTION 

AaRSs are of primary importance in the transformation of the genetic information 
from mRNA into polypeptide chain covalently attaching appropriate amino acids to the 
corresponding nucleic acid adaptor molecules – tRNA via the two-step aminoacylation 
reaction. The attachment of the correct amino acid to a tRNA is the crucial step 
determining the accuracy of protein biosynthesis. AaRSs exist as monomers, α2-dimers or 
tetramers of α4 and (αβ)2 types. Previously (Tworowski, Safro, 2003; Tworowski et al., 
2005), we evaluated the contribution of electrostatic interactions to formation of aaRS-
tRNA encounter complexes. It has been shown that 3D-isopotential surfaces (IPS) 
generated by monomeric, dimeric and heterotetrameric synthetases at 0.01kT/e contour 
level reveal the presence of large positive patches (“blue spaces”), one for each tRNA 
substrate molecule. It is apparent that this characteristic landscape of aaRS’s electrostatic 
potential is triggered by specific distribution of the charged residues along sequences and, 
thus in space.  

A challenging problem is to identify the charge distribution along the polypeptide 
chain that substantially affects the topology of aaRS’s ES field. Based on MSA, we 
subdivided the entire pool of aaRS’s charged residues into three subsets: native (NS), 
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conservative (CS) and non-conservative (NCS). It is of interest that the total charge of CS 
is close to zero, whereas that of NCS is similar to the aaRS’s net charge. According to 
Smoluchowski’s theory of bimolecular association, the capture distance for two 
macromolecules is a sum of reactants hydrodynamic radii (Berg, von Hippel, 1985). Thus, 
each aaRS can be conceived as a reactive sphere (RES) built around the geometric center 
of enzyme with radius equal to the capture distance (RRES). Our calculations made 
apparent the resemblance of shape and topography of positive patches at ±0.01 kT/e 
formed by NS and NCS, and essential differences in landscapes generated by the CSs.  

METHODS 

Multiple sequence alignment (MSA). ClustalW program (www.ebi.ac.uk/clustalw) 
with BLOSUM62 matrix and gap penalty of –12 was used. The sequences of different 
bacterial organisms were included in the MSA for each tested aaRS system. The 
sequences were derived from the Swiss-Prot Database (www.ebi.ac.uk/swissprot) and the 
Protein Data Bank (PDB) (www.rcsb.org/pdb). “Conservative subset” (CS) of charged 
residues includes strictly conserved residues as well as all meaningful substitutions (Asp 
↔ Glu or Arg ↔ Lys) identified by MSA; “non-conservative subset” (NCS) consists of 
non-conserved charged residues. 

Statistical analysis of charge distribution among aaRSs’ domains. Domains’ 
“charging” ( chrg

iD ) and fractions of conserved ( CS
iF ) and non-conserved ( NCS

iF ) 
charged residues associated with itch domain are presented by: 

chrg

chrg
ichrg

i N
ND =  (1),            

CS

CS
iCS

i N
NF =  (2),            ,

NCS
NCS i

i
NCS

NF N=  (3) 

where CS
iN , NCS

iN  and chrg
iN  are the numbers of conserved, non-conserved and all 

charged residues of the itch domain, respectively; CSN , NCSN  and chrgN  are the conserved, 
non-conserved and total number of charged residues in aaRS’s polypeptide chain. 

Calculation of electrostatic potentials. Electrostatic potentials were calculated at each 
grid point on the reactive encounter sphere (RES), built around the geometric center of 
molecule, by using Poisson-Boltzmann equation implemented in Delphi4.0 (Rocchia et 
al., 2004). The standard ionization states of the charged residues at physiological pH 7 
were applied, i.e. neutral form for the His and ionized forms for Asp, Glu, Arg and Lys. 
To model charge distribution of native subsets, the formal charges were assigned to all 
charged residues of the protein. To evaluate the contribution of individual domain to the 
electrostatic potential the original PDB-files were modified by switching off the charged 
residues of the domain.  

Similarity analysis for electrostatic potentials. Electrostatic potentials ϕ  for in silico 
modified aaRSs were calculated at the same grid points on RES, as native ones. For each 
pair of potentials ( modϕ  and nativeϕ ) in the native “blue space” area (i.e. at the 

points ( )
nativeNϕ + ), the Hodgkin similarity index (SI) was calculated (Blomberg et al., 1999):   

mod

mod mod

2( , )
( , ) ( , )

native

native native

SI ϕ ϕ
=

ϕ ϕ + ϕ ϕ
 (4) 
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mod mod
, ,

( , ) ( , , ) ( , , )native native
x y z

x y z x y zϕ ϕ = ϕ ϕ∑  (5) 

Here mod( , )nativeϕ ϕ , mod mod( , )ϕ ϕ  and ( , )native nativeϕ ϕ denote scalar product 
calculated for all points within the region of positive patch; x, y, z are Cartesian 
coordinates of the grid points on RES. 

RESULTS AND DISCUSSION: A CASE STUDY 

By way of illustration we selected two types of aaRSs with different subunit 
organization: monomeric IleRS [α; (PDB code 1qu2)], and hetero-tetrameric PheRS 
[(αβ)2; PDB code 1eiy].  

The Hodgkin index was used as a measure of similarity between the native 
electrostatic potential and those produced by different subsets of charged residues. SI falls 
in the range from 1 to -1.  The SI close to 1 indicates to a high degree of similarity, 
whereas 0 and -1 correspond to fully uncorrelated and anti-correlated potentials, 
respectively. As it follows from our results SI reaches its peak ~1 when electrostatic 
potential on RES is generated by NCS. In contrast, the electrostatic potential generated by 
CSs uncorrelated (SI ~ 0) with those of native set and NCS subset.  

Analysis of CS’s residues, distributed among aaRS’s domains, reveals that larger 
portion of conserved charged residues is concentrated in catalytic domains (Fig. 1а, c). 
The Rossmann fold of IleRS contains 64 % of CS’s residues while the catalytic domain of 
PheRS 46 %. However there are structural domains such as N-term, Cp2, Zn-binding of 
IleRS and B4 domain of PheRS in which conserved charged residues were not found. 
This suggests dissimilar distribution of CS’s residues among different aaRS’s domains.  

The intriguing result is that, regardless domain’s charging, the switching-off charged 
residues from certain domains has no significant impact on the distribution of electrostatic 
potential on RES. It is of interest that contribution of some domains to the EP on RES 
remains small, even though the concentration of non-conserved charged residues ( NCS

iF ) 
there is relatively high. Thus high degree of similarity to native EP is observed for IleRS, 
when contribution of non-conserved charged residues from the N-terminal, Rossmann-
fold, Cp2, Helical, C-term junction or Zn-binding domains is alternately excluded.  This 
is evidenced by proximity of SI values to 1 (Fig. 1b). In case of PheRS, when charged 
residues are switched off within the domains B1, B3-B8 or catalytic module, the resulting 
electrostatic potentials are remain unchanged in compare to the native one (Fig. 1d). The 
domains that are significant for positive patches formation usually not involved in 
aminoacylation reaction and demonstrate low SI values. Some of them interact with 
tRNA, whereas function of others hasn’t been detected yet.  

The Cp1 domain of IleRS that may be considered as a “crucial” for characteristic 
positive patch formation (see Fig. 1b) is associated with additional proofreading activity 
of the enzyme and contains a distinct active site where misactivated aminoacyl-adenylate 
or misaminoacylated tRNA are hydrolyzed (Silvian et al., 1999).  

In PheRS isolated from Thermus thermophilus, the coiled-coil domain of α-subunit 
(CC*) is characterized by SI close to 0 (Mosyak et al., 1995). Two positive patches on RES, 
corresponding to two cognate tRNA interacting with PheRS becomes distorted and 
vanishingly small when charged residues of coiled-coil are switched-off. Functions of B2 
domain that also plays a significant (albeit less pronounced) role in EP formation are not 
immediately evident from structures of the various functional complexes (Goldgur et al., 
1997). A similar observation hold true for other aaRSs. Thus, domains that contribute 
significantly to the “blue space” formation very often involved in alternative activities of the 
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aaRSs. It is notable that structural domains of aaRSs playing a ‘crucial’ role in tRNA-
protein recognition at long distances have a relatively low concentration of conserved 
charged residues. Therefore, NCS arranged in these domains can be treated as positive 
electrostatic determinant favoring the attraction and navigation of tRNA to its binding area.  

It is possible to speculate that aaRSs family has acquired these domains at later stages 
of evolution. 

 

Figure 1. Distribution of charged residues and SI values in IleRS (a, b) and PheRS (c, d) domains. 
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SUMMARY  

In this work functioning of ion channels is studied using steered molecular dynamics 
method. Gramicidin A channel along with glycine and acetylcholine receptor channels are 
considered in terms of ion migration and conformation dynamics. 

INTRODUCTION 

The progress in theory and computer sciences gives us new opportunities for 
development of biomolecular design. For these purposes, MD simulation and its different 
variations are used. Below, we consider functions of transmembrane ion channels. These 
channels are usually formed as an association of peptide structures. Ion selectivity of a 
channel depends on the amino acid sequence. Varying this sequence, the desired 
selectivity can be achieved. For example, it is important for design of biosensors. The 
same methods can be used to for search of targets and appropriate ligands as well. 

METHODS AND ALGORITHMS 

The technique is based on numerical solution of classical Newtonian equations with 
respect to a many-atom system. It is well known from mechanics that the evolution of a 
system and all its properties is totally predefined by the interaction potentials and initial 
conditions. Thus, solving these equations of motion for a many-atom system we can 
obtain its evolution and properties. At present MD simulations are applied to many issues 
in the areas from biology up to astrophysics. In most cases the simulation results are 
rather reliable and can be regarded as derived from a computational experiment. There are 
two variants of MD simulations: the one is equilibrium MD, and the other is Steered MD. 
In SMD we apply definite external forces to certain particles or apply extra boundary 
conditions, depending on the problem. For study of large molecular systems the SMD 
approach is preferable. This is due to the problem of ergodicity and impossibility to reach 
equilibrium state in silico in a reasonable time period (Shaitan, Tereshkina, 2005). 

RESULTS AND DISCUSSION 

Let’s consider one of the simplest channels formed by two molecules of gramicidin A. 
Here we can see the channel itself embedded into a phospholipidic bilayer (Fig. 1a), and 
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separately the structure of the channel in two projections (Fig. 1b, c). The balls are 
carbonyl oxygen atoms of peptide groups. These groups form layers in the channel. There 
is an excess of electronic density on the carbonyl groups which impacts the kinetics of 
cation transfer through the channel. 

 

Figure 1. Structure of the system (a) in two projections (b, c). 

Sodium ion transfer along the channel is represented on Fig. 2. The ion hydrated by 
six water molecules enters the channel and looses four water molecules. Then the ion 
hydrated by two molecules of water moves through the channel. For a better visual 
perception the membrane and water atoms are not depicted. The ion movement takes 
place under the action of an external force or electric potential. 

In the areas where the cation comes across the excess negative charge density of 
carbonyl groups, we can observe that its motion slows down (Fig. 2). In other words, the 
peculiarities of the channel interior are rather important, and this can be a matter of 
molecular design. 

Then we consider an example of anion channel, formed by TM2 subunits of glycine 
receptor (Yushmanov et al., 2003). The receptor plays an important role in the 
functioning of nervous system. The channel is formed by five transmembrane alpha-
helices (Fig. 3). As in the previous case there is a region of excess charge, but now it is 
positive charge from arginine residues that play definite role in chlorine anion transfer. 
Mutations in the channel part of the receptor affect the conductivity of the channel, and 
can even transform the channel from an anionic to cationic one. 

On Fig. 4 we can see in silico reconstruction of the channel part of the receptor that 
we have studied. The channel is represented by a funnel formed by 5 alpha-helixes. The 
funnel entrance for the ion is quite wide; the funnel outlet is rather narrow. For 
stabilization of the system we used an alkane rim which played a role of bandage. On  
Fig. 4b you can see a pentameric structure of the channel, view from the outlet side. 
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Figure 2. Kinetics of the sodium ion transfer. 

 

Figure 3. General view of the glycine receptor in membrane. 

 

Figure 4. Model of the glycine receptor’s channel. Side view (a). Top view (b). 

The dynamics of chlorine anion transfer through the channel can be divided into three 
phases (Fig. 5). At the beginning we can observe a rather slow entering of the anion into 
the channel through the first belt of arginine residues. Then a rapid transfer up to the 
lower belt takes place. Then a rather slow phase occurs, when the anion overcomes this 
barrier and escapes the channel. 
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Figure 5. Kinetics of the chlorine ion (solid line) and the hydration shell water molecules (other liner) 
transfer through the channel of the glycine receptor. 

 

Figure 6. Model of the acetylcholine receptor’s channel and kinetics of the sodium ion transfer. 

The kinetics of the process is shown on Fig. 5 (the position of the chloride ion is 
shown by a solid black line).  

On Fig. 6 we can see the migration process of a sodium ion through the nicotine 
acetylcholine channel, a channel of the same family as glycine one (Miyazawa et al., 
2003). It seems that the interior of ion channels is constructed in such a way that charged 
side chains of amino acid residues tend to form some kind of gates responsible for the 
channels’ selectivity.  

CONCLUSION 

Computer design of charge interior of the channels by means of point mutations seems 
to be very useful for design of channels with predefined properties. SMD simulations is 
the most efficient and economical way to find some possible new products in this area. 
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SUMMARY 

Motivation: Elaboration of computer aided molecular modeling techniques for 
prediction of solute behaviour in biphasic (water/hydrophobic medium) systems. The 
main focus is on biological systems and especially drug design. 

Results: molecular dynamics simulations for all main types of amino acid residues at 
water/vacuum and water/hexane interface were performed. We compute distribution 
and orientation histograms for amino acid residues to analyze their behaviour in the 
biphasic system. 

INTRODUCTION 

It is well known that one of the most important structure formation components in 
biological systems is biomembranes. They in fact form surfaces that can be treated as 
interfaces between polar aqueous solutions and non-polar environment represented by 
phospholipidic side chains. It is hard to overestimate the role of polarity and non-polarity 
of phases on the distribution of substances and formation of different structures inside 
biological systems. Of special interest are the interaction properties of proteins with 
solvents and interfaces (Okhapkin et al., 2005, 2006) because these interactions contribute 
to the process of protein folding and govern its functional activity. That’s why our idea 
was to study the behaviour of amino acid residues, as monomer units of proteins, in an 
interfacial system. 

OBJECTIVE 

By means of molecular dynamics simulations the properties of amino acid residues in 
a system containing liquid-liquid interface between water and non-polar phase are studied 
(Fig. 1). The non-polar phase is modeled either by hexane or vacuum media. We intend to 
determine free energy profiles, free energy of partitioning between two phases and free 
energy of adsorption at interface. MD simulations can also reveal conformational changes 
of residue structure in different environments. 

SIMULATION SECTION 

The system consisted of two lamellae (one of water and one of hexane or vacuum)  
(Fig. 1), placed in a simulation with periodic boundary conditions in all three directions. In 
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fact there are two interfaces because of the periodicity. The x and y box sizes are 40 A. The 
height of each lamella is approximately 20–36 A, but it varies slightly because of the 
Berendsen barostat algorithm applied along z-axis maintaining pressure of 1 bar. There are 
1070 water molecules and 147 hexane molecules in hexane lamella. Hexane phase was 
initially arranged in 3 layers of hexane molecules, 7*7 = 49 molecules in each layer. We 
make simulations with collision thermostat, maintaining system temperature at 300K. 
Integration step of 1 fs was chosen. Trajectories up to several nanoseconds were collected. 

 

Figure 1. Structure of water/vacuum interface system with amino acid residue. 
 
We used AMBER99 forcefield and TIP3P water model with unconstrained internal 

degrees of freedom. The amino acid residue, initially settled at the interface, was used in the 
form as if they were built into protein sequence. We did not do any terminal blocking. In 
fact they cannot exist in reality, but they reflect the properties of protein monomer units. 

As a first step towards modeling the above described system was modeling it without 
hexane phase, but using a rigid wall potential to prevent water molecules evaporate from the 
surface. From the simulations we got residue trajectories, derived probability histograms 
for residue and for its parts. We built up orientation patterns of residues. 

RESULTS AND DISCUSSION 

Let us consider at first the results of water-vacuum simulations. We performed them 
for all main types of residue side chains. Generally speaking, we can regard side chains as 
hydrophobic or hydrophilic to some extent. 

For purely hydrophobic side chains the residues tended to stay near the interface. We 
consider an example of phenylalanine (Fig. 2). Probability histograms for mass center of 
backbone and side chain are depicted. Two vertical lines bound the region of repulsive 
potential. We see that PHE adsorbs on the interface. And it is clear that it has a certain 
conformational and rotational asymmetry. The backbone being a hydrophilic part tends to 
settle itself deeper in the water layer than the side chain.  

The similar behaviour was observed in systems with other residues. But as for 
residues with strongly hydrophilic side chains, they tended to desorb from the interface 
into bulk water phase. 

Let us now pass to a water-hexane system. 
On the Fig. 3 we see the density profiles of hexane and water phases. The interface region 

is about 5 A wide. On Fig 4 we observe the probability histogram for this system. The residue 
adsorbs on the interface and again has dominant orientation direction. But the distance 
between peaks of two curves is about 1.2 A instead of 2 A in the water-vacuum case. 
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Figure 2. Distribution functions for backbone and side chain of PHE  
in water/vacuum system simulations. 

 

 

Figure 3. Distribution functions for backbone and side chain of PHE  
in water/hexane system simulations. 

Analogously other types of residues were studied. 
Analyzing histograms for different types of residues both in water/vacuum and 

water/hexane studies we find that behaviour of amino acid residues at water/vacuum and 
water hexane interfaces is in general similar. 

We propose that it is possible to use water/vacuum systems with collision thermostat 
as rough model for water/hydrophobic medium interface systems. 
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Figure 4. Relative density profiles for water and hexane in biphasic system. 
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SUMMARY 

Motivation: Modern methods of protein secondary structure prediction, based entirely 
on protein sequences, have a very good results for “typical” α- and β-structures. But there 
are no accurate prediction methods for other types of the protein chain conformation, 
firstly for polyproline II left-helical conformation (PPII). However, PPII conformation has 
a very important biological role. New approaches of protein chain conformation 
annotation are required for adequate fold recognition and modeling.  

Results: The different conformation type fragments in the globular proteins of the 
protein databank (PDB) were analyzed. We revealed the interrelation between sequence 
and structure even for very short oligopeptides. It was found the tetrapeptides with a good 
preference of distinct types of secondary structure. It is the first method for structure 
annotation with a relatively high accuracy level (~60 %) for PPII conformation prediction. 

Availability: WEB-server containing tetrapetide structure properties databank and 
search tool: http://strand.imb.ac.ru/consol/index.html. Protein chain conformation 
prediction method: http://strand.imb.ac.ru/ssp/index.html. 

INTRODUCTION 

Modern methods of protein chain conformation analysis and prediction aimed to long-
range fragments of a protein chain, big domains and regular structure segments. There are 
now available many methods with an accuracy level of ~80 % for α-helices and β-sheets 
(King et al., 2000). However, new approaches are required that can reveals interrelation 
between sequence and secondary structure (Koehl, Levitt, 1999; Rost, 2001; Aydin et al., 
2006; Lee et al., 2006). Moreover, there are many protein chain segments with a non-
regular structure (β-turns), and there is a specific conformation of poly-L-proline-II type 
having small size of typical element (three-four residues) and absence of inner hydrogen 
bonds. It is clear now that left-helical conformation (PPII) plays an important structural 
and biological role (Blanch et al., 2000; Vlasov et al., 2001; Rath et al., 2005). So it 
seems reasonable to analyze conformational properties of short chain fragments and 
design a prediction algorithm for non-regular conformations. We try in our work to 
summarized conformation properties of short oligopeptides (di-, tri- and tetrapeptides) of 
globular proteins from PDB to select oligopeptides with stable (predictable) 
conformations. 
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METHODS AND ALGORITHMS 

The relative content for different types of conformations in globular proteins was 
estimated and a big ratio of left-handed helical segments was shown. We analyzed 
conformation properties of oligopeptides, and shows existence of tetrapeptides with good 
preference of distinct structure type: α-, β- and left-handed helix. 

We propose a new method for secondary structure prediction based on oligopeptide 
conformation properties. This method decomposes sequence under analysis into 
overlapping tetrapeptides, and each residue is present in four tetrapeptide fragments. For 
example, the D residue at the sequence ARNDCEV occurs in ARND, RNDC, NDCE and 
DCEV tetrapeptides. We estimate the probability with which this residue (D), from the 
above sample sequence, forms a particular structure, using a simple additive scheme: 

P(struct) D = ¼( PARND   + PRNDC + PNDCE + PDCEV), 

there  P(struct)ARND , P(struct)RNDC, P(struct)NDCE and P(struct)DCEV  are frequencies 
with which residue (D) forms a particular structure in corresponding tetrapeptides in all 
globular proteins of PDB. 

IMPLEMENTATIONS AND RESULTS 

The special database ConSOL (Conformation Statistic of Oligopeptides) was created 
and corresponding WEB-service was design. This relational database containing 
information about tetrapeptide structure preferences: occurrence in globular protein 
chains, frequencies of three main structure types (α-, β- and left helix) separately for 
every position (1st, 2nd, 3rd, and 4th residue) and common oligopeptide structure 
description (such as “all-α” or “mixed-β-and-left-helical”).  

Using the test subset of distantly related proteins whose secondary structure was 
determined with a high accuracy, we estimates average values of the prediction accuracy 
for main three types of secondary structures: 
• α-helices: ~ 72 %, 
• β-sheets: ~ 70 %, 
• PPII conformation: ~65 %. 

ConSOL server and a new method of secondary structure prediction are described in 
(Vlasov et al., 2005). 

DISCUSSION 

We suggest that even short sequence segments (tetrapeptides) provide sufficient 
information for predicting protein chain conformation. Our aim was to investigate 
structural preference of short oligopeptides, and in contrast to common prediction 
schemes, we use the observed conformational preferences without additional rules or 
parameters. In our approach, at the first time good prediction for poly-L-proline-II 
structure was obtained. Although empirical rules may improve formal prediction results, 
it would obscure the described sequence-structural biases and, therefore, we have  
not done this.  

The ConSOL database will be useful to protein design and analysis of peptide chain 
conformations. It is possible now to compare conformation preferences of short peptide 
fragments and select oligopetides of specific conformation type. Analysis of most 
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structure-stable oligopeptides may contribute to understanding how amino acid 
substitutions may affect a protein chain local conformation.  
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SUMMARY 

Motivation: It was shown that the nucleotide sequence at the CDS beginning as well 
as N-terminal amino acids could influence the recognition of translation start site. 
However, interrelationship between these features and mRNA translation initiation 
efficiency was not investigated in detail. 

Results: Statistical deviations in amino acid frequencies at N-terminal positions 2–4 of 
proteins were analyzed in Arabidopsis thaliana, Drosophila melanogaster, and Homo 
sapiens genes. It was found that the most frequent amino acid combinations in these 
positions were species-specific (Ala-Ser-Ser for Arabidopsis thaliana, Ser-Ser-Asn for 
Drosophila melanogaster, and Ala-Ala-Ala for Homo sapiens). Note that the second 
position of the protein sequence was most frequently occupied by amino acids with 
codons starting from GN but not GU. Statistically significant deviations in N-terminal 
amino acid frequencies are likely to correlate with their influence on both protein stability 
and translation start site recognition. 

INTRODUCTION  

Contextual organization of the 5′-terminal part of the protein coding sequence (CDS) 
may result from several factors including the usage of a protein-specific amino acids, 
preferable usage of optimal codons to provide mRNA with a high translation elongation 
rate, and a specific organization of the translation initiation signal. It was shown that the 
positional nucleotide frequencies in this region are highly biased. The most biased CDS 
position is the 2nd triplet of CDS (Berezovsky et al., 1999; Sawant et al., 2001; Niimura 
et al., 2003). It was demonstrated that the most frequent amino acid at this position were 
alanine for arabidopsis and human proteins and serine for drosophila (Sawant et al., 2001; 
Niimura et al., 2003). The most frequent amino acids at positions 2–4 of proteins in plants 
were reported to be Ala – Ser – Ser (Sawant et al., 2001) and, in human proteins, the 
second position was most frequently occupied by threonine (Berezovsky et al., 1999). It is 
assumed that these amino acids increase protein stability but this hypothesis has not  
been verified. 
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MATERIALS AND METHODS 

Dataset 
The cDNAs of Arabidopsis thaliana, Drosophila melanogaster, and Homo sapiens 

genes were extracted from the EMBL database (04.02.2005 release). The redundant 
nucleotide sequences (with homology more than 95 %) were excluded with the aid of the 
CleanUp program (Grillo et al., 1996). The resulting sets included 13768 cDNAs of 
Arabidopsis thaliana, 2005 of Drosophila melanogaster, and 24414 of Homo sapiens. 
The average codon frequencies (ExpCUTG, frequency per 1000 codons) were obtained 
from http://www.kazusa.or.jp/codon/. 

Statistical analysis 
The expected (Exp) codon frequencies were calculated as Exp = 0.001*N*ExpCUTG 

(N, number of sequences in a sample). The observed (Obs) codon frequencies were 
calculated as Obs = Ai/0.001*N, (where Ai is the observed number of codons of type A at 
position i, N is the number of nucleotide sequences in a set), the Obs and Exp frequencies 
for amino acids residues were calculated as the total sum of the Obs and Exp frequencies 
of the corresponding synonymous codons. For each amino acid residue at a given 
position, the deviation of the Obs values from the Exp values was estimated by χ2 

criterion according to: χ2= (Obs-Exp)2/Exp. For each amino acid residue, the χ2 value was 
estimated separately with one degree of freedom. The sum of all 20 (61) χ2 values for each 
residue (codon) at a given position gave the total deviation for the given position with 19 
(60) degrees of freedom. In this work, we used the following numeration: the start AUG 
codon is numbered +1; the first nucleotide of CDS (A in AUG codon), +1. 

RESULTS AND DISCUSSION 

We evaluated the deviations of amino acid frequencies from the expected values. It 
was found that the amino acid content at positions 2–4 was significantly biased (Table 1). 
Note that the amino acid frequencies were more biased at pos. 2 than at pos. 3, and were 
more biased at pos. 3 than at pos. 4. 

Table 1. The χ2 values at positions 2–4 of proteins 
Position Second Third Fourth 
Arabidopsis thaliana 9409.08 1167.89 503.97 
Drosophila melanogaster  467.14 85.81 59 
Homo sapiens 9661.52 1329.86 740.67 

 
The ratio of observed to expected amino acid frequencies and the significance of 

deviations from the expected values were calculated (Table 2).  
There are some preferences common for all organisms analyzed. For example, amino 

acid preferences at pos. 2 is Ala> Ser> Glu*>Gly*> Asp (* - except for D. melanogaster). 
It can be noted that the most frequent amino acids corresponded to the codons starting 
from G (Ala, Glu, Gly, Asp). This might result from the functional significance of 
guanine at pos. +4 of CDS (i.e., at the 1st nucleotide of a second codon) (Kozak, 1997). 
The most overrepresented second codon is GCG: probably, this triplet provides more 
efficient AUG recognition compared with other GNN combinations. However, the codons 
of valine also start from G, but this amino acid is underrepresented at the 2nd protein 
position (Table 2). It is likely that the valine-encoding codons are unfavorable for the 
translation initiation rate. It had previously been shown in mammalian in vitro translation 
systems that the positive influence of guanine at pos. +4 was eliminated if position +5 was 
occupied by uridine (Kozak, 1997). Valine codons corresponded to this situation (GUN) 
and this could be the reason for valine underrepresentation. Our results suggest that 
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G+4U+5 combination is unfavorable in vivo not only in mammalian (Kozak, 1997) but also 
in drosophila and arabidopsis mRNAs. 

Table 2. The ratio of observed to expected amino acid frequencies at pos. 2, 3, 4 of СDS of arabidopsis, 
human, and drosophila genes 

Obs/Exp Arabidopsis thaliana Drosophila melanogaster Homo sapiens 
Position 2 3 4 2 3 4 2 3 4 
Lys 0.791* 1.102 1.06 0.86 1.12 1.263 0.861 0.891 0.99 
Thr 0.791 1.481 1.251 1.14 1.311 1.14 0.901 1.151 1.00 
Asn 0.701 1.094 1.03 0.795 1.06 1.421 0.913 0.811 0.881 
Met 0.96 1.172 0.93 0.99 0.86 1.14 0.671 0.791 0.761 
Ile 0.441 0.831 1.01 0.371 0.82 1.06 0.401 0.571 0.721 
Glu 1.651 1.02 0.97 1.15 0.88 0.99 1.321 1.02 0.944 
Asp 1.251 0.841 0.711 1.411 1.253 0.86 1.191 0.99 0.732 
Gly 1.481 0.924 0.841 0.94 0.701 0.671 1.211 1.101 1.01 
Ala 3.731 1.084 0.95 1.921 1.16 0.95 3.021 1.501 1.281 
Val 0.801 0.691 0.902 0.621 0.72 0.98 0.711 0.811 0.881 
Gln 0.591 0.771 1.051 0.753 0.753 0.91 0.571 0.912 0.923 
His 0.311 0.681 0.822 0.684 0.94 0.73 0.411 0.751 0.781 
Arg 0.561 1.211 1.06 0.692 1.11 0.96 0.771 1.211 1.241 
Pro 0.501 0.711 0.882 0.97 0.86 1.04 0.922 1.151 1.251 
Tyr 0.321 0.551 0.711 0.81 0.81 0.674 0.361 0.511 0.681 
Trp 0.351 0.631 0.621 0.66 0.86 1.16 0.95 1.11 1.144 
Cys 0.351 0.89 0.93 0.401 0.99 0.91 0.441 0.771 0.861 
Ser 1.201 1.671 1.471 2.061 1.351 0.99 1.391 1.271 1.181 
Leu 0.361 0.851 1.03 0.661 0.93 1.03 0.561 0.96 1.071 
Phe 0.431 0.821 0.98 0.672 1.15 1.19 0.571 0.741 0.96 

* 1, 2, 3, 4, 5- significance levels P < 0.05, 0.025, 0.01, 0.005, 0.001, respectively. 
Significantly overrepresented values are bold-faced, significantly underrepresented, italicized. 

 
 
Valine underrepresentation at pos. 2 of eukaryotic proteins may also in part result 

from its hydrophobicity. As can be seen, hydrophobic amino acids Leu, Ile, Phe, Trp, Pro, 
Val are mainly underrepresented at N-terminal positions. Interestingly, serine is also 
overrepresented at pos. 2 and its codons (especially UCG) are overrepresented in all 
organisms analyzed. This is very likely to be an exception, since these codons start from 
nucleotides other than guanine. It is possible that UCG also increase AUG recognition 
because some specific features of this triplet may abrogate the negative influence of 
uridine at position +4. It may also be assumed that the combination Met – Ser at N-end is 
important for the functional activity of certain protein classes, hence a suboptimal AUG 
context. Generally, amino acids overrepresented at the 2nd position (Ser, Glu, Gly, Asp) 
are hydrophylic (Sweet, Eisenberg, 1983): note that both negatively charged amino acids 
(Glu, Asp) appeared in this group. It was also shown that the presence of Ala, Ser, Thr, 
Gly, and Pro at the N-end of proteins increases cytoplasmic stability (Tobias et al., 1991; 
Varshavsky, 1996; Sawant et al., 2001). 

The 3rd position of proteins is characterized by preferable usage of Ser, Thr and Arg*  
(* except for D. melanogaster). The 4th position is characterized by lesser deviations in 
amino acid frequencies from the expected values and no common pattern for the 
organisms assayed was found. The most overrepresented are Ser and Thr (arabidopsis), 
Asn and Lys (drosophila), Ala and Pro (human).  
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SUMMARY 

Motivation: Often, dimerization (oligomerization) of membrane proteins (MPs) is 
crucially important for their functioning. Investigation of such processes by modern 
experimental methods is hampered by a number of technical difficulties. An alternative 
approach lies in elaboration of molecular modeling (or, in silico) techniques. 

Results: A computational approach to study the dimerization of α-helical MPs is 
proposed. The method is based on molecular dynamics (MD) of peptides in model lipid 
bilayers. It was tested via exploration of the structure of a dimer formed by TM fragments 
of pro-apoptotic protein BNIP3. The results of simulations are in a good agreement with 
the experimental data. Moreover, MD simulations allow assessment of some effect not 
detectible by the experimental techniques.  

INTRODUCTION 

MPs play a key role in cell life being involved in signaling, ion conductance across the 
membrane, cell communications, membrane transport, and so on. Unique properties of 
these proteins are determined mainly by the spatial structure and dynamic behavior of 
their transmembrane (TM) domains. α-Helix represents one of the most frequently 
occurring structural motifs in TM protein fragments. Many MPs (e.g., ion channels, 
receptors, etc) consist of a bundle of helices. Moreover, in many cases dimerization 
(oligomerization) of MPs is the necessary condition of their functioning. Therefore, 
understanding of the intimate molecular mechanisms of MPs’ action may be achieved 
only via exploring of helix-helix interactions in membrane-mimic media. This, in turn, 
requires that the spatial structure of TM protein oligomers is determined. 

Delineation of MPs’ structure using experimental techniques is significantly hampered 
by a number of difficulties concerned with the sample preparation, preservation of the 
native conformation, and so forth. This is clearly illustrated by the fact that MPs represent 
less then 1 % of 3D structures accumulated so far in the Protein Data Bank. Moreover, the 
only structure of TM helical dimer is available. Important new insights into the structure-
function mechanisms of MPs and their complexes can be gained by the use of molecular 
modeling techniques. Fast estimation of TM helix association can be made via simulations 
in implicit membranes. Unfortunately, high computational efficiency is often attained at the 
cost of simplifications inherent in the membrane model. Such calculations therefore provide 
only rough model of membrane dimers. The refinement of these models can be done using 
MD simulations in all-atom hydrated lipid membranes and micelles. This approach is one of 
the most powerful computational techniques because it provides not only the information 
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about atomic-scale details of protein-membrane interactions but also takes into account the 
effects of proteins on structural and dynamic characteristics of membranes.  

In this work we present the results of modeling of the spatial structure of a dimer 
formed by TM fragments of the protein BNIP3 using MD simulations in explicit DMPC 
bilayer. The pro-apoptotic protein BNIP3 belongs to the Bcl-2 superfamily, which is 
implicated in mitochondria-mediated apoptosis. A special attention is given to 
possibilities of MD approach in prediction and analysis of the dimeric structure. The 
quality of prediction is estimated by direct comparison of MD results with experimental 
structure, recently determined in our laboratory by NMR spectroscopy in DMPC/DHPC 
bicelles (Bocharov et al., manuscript in preparation). 

METHODS 

Starting conformations of BNIP3 dimers [sequence K163VFLP SLLLS HLLAI GLGIY 
IGRR186] were obtained using Monte Carlo (MC) conformational search in implicit 
membrane. Description of the implicit model and the related computational protocols 
were described earlier (Vereshaga et al., 2005). In total, four different structural models of 
the dimer were obtained. All these conformations were relaxed in the presence of the 
implicit DMPC bilayers.  

The spatial structure of the dimer obtained via MC-search was placed in the center of 
equilibrated DMPC bilayer (512 molecules). Then, lipid molecules intersected with the 
peptides, were removed. The resulting system was placed into rectangular box and 
solvated by SPC water molecules. The systems were then equilibrated by energy 
relaxation via 5 × 104 steps of steepest descent minimization followed by heating from 5 
K to the temperature of simulations (315 K) during 500-ps MD run with the fixed 
positions of the peptides. After that, water molecules located in the bilayer interior were 
removed and the system was heated to the temperature of simulation during another  
500-ps MD run without any restraints. Finally, the long-term (10 ns) collection MD run 
was carried out. Description of the simulation details is given in (Volynsky et al., 2005). 

Analysis of MD trajectories was performed using original software developed by the 
authors and utilities supplied with the GROMACS package. The bilayer structure was 
characterized using the area per lipid molecule, the mean order parameter of acyl chains 
of lipids and the distance between phosphorus atoms of different monolayers. Stability of 
the monomer and the dimer was analyzed by calculation of the secondary structure of the 
peptides, root-mean-square deviation (RMSD) of their heavy atoms from the starting 
conformation, fluctuation of Cα atoms along the membrane normal. The packing of 
helices in the dimer structure was characterized by the distance d and angle θ between the 
helix axes, as well as by the contact surface area on the helix-helix interface. Interactions 
of the dimer with the environment were estimated in terms of interaction energy of its 
amino acid residues with lipid molecules and water. Hydrogen bonding of the peptide was 
also thoroughly explored. All these parameters were averaged over the equilibrium parts 
of corresponding MD trajectories (last 5 ns). 

RESULTS AND DISCUSSION 

Insertion of the BNIP3 dimers into the pre-equilibrated DMPC bilayer does not lead to 
noticeable distortions of the integrity of the lipid-water system. Adaptation of the dimer’s 
structure to the membrane environment takes place mainly at the first stage of MD. It is 
accompanied by redistribution of protein interaction with water and lipid phases of the 
system. Geometry of the dimer, its interaction with the environment, and hydrogen 
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bonding equilibrate at the last stage of MD. All this data point out to correct choice of the 
configuration for the starting system and to adequate simulation protocol. 

The first question that can be solved by MD simulation is the determination of the 
dimer structure. Analysis of the MD results shows that there are three possible packing 
geometries. Two of them correspond to a right-handed helical supercoil with the distance 
between the helical axes (d) ~ 7–8 Å, and the angle Θ ~ -30° (Fig. 1). The third model is a 
left-handed structure with d ~ 9 Å and Θ ~ 40°. Analysis of the time evolution (in MD) of 
geometric and energy characteristics of the dimer shows that the left-handed model is less 
stable – the distance between monomers grows up, being accompanied with the loss of 
intermonomer contacts. In our opinion, such analysis may be useful for discrimination 
between the native-like and misfolded conformations of the dimer. 

 

Figure 1. Results of MD simulation of the BNIP3 dimerization. а – equilibrium structure of the dimer in 
membrane. Protein is shown by the dark ribbon. Lipid molecules are displayed with gray sticks. 
Phosphorus atoms are presented by spheres. b, c – conformational variability of the dimer structure. 
Different models of dimer structure obtained in MD simulations. Polar residues are selected by dark 
gray. Lipids and water molecules removed for clarity. Positions of the membrane-water interface (the 
mean position of phosphorus atoms) are shown by black lines.  

The dynamic characteristics of the membrane-dimer system are very important for 
determination of the structure-activity relationship for a given protein. Thus, analysis of 
fluctuations of BNIP3 residues along the membrane normal shows that the N-terminal 
part of the peptide is much more flexible. This corresponds to different H-bonding 
patterns between the peptide and the bilayer on its N- and C-termini. On the C-terminus 
Arg residues form up to ten long-living H-bonds with the lipids headgroups. In contrast, 
the N-terminal residues form only five short-living H-bonds. Another reason for such a 
flexibility consists in interaction between the monomers. In the region His173-Arg185 the 
helix-helix interface is very similar for the two right-handed models. It is formed 
primarily by small residues Gly and Ala. On the N-terminus the pattern of inter-monomer 
contacts is somewhat different depending on the model. In this case the interface consists 
of polar side chains of residues Ser168, Ser172, and His173. In this part of the dimer the 
helix packing is not as tight as on the C-terminus. As a result, the presence of the free 
volume and the existence of a number of donors and acceptors of H-bonds determine the 
structural variability of helical packing in the N-terminal part of the peptides. 

The next question which can be addressed via MD simulations is the influence of the 
dimer on the bilayer properties. As mentioned above, insertion of the pair of helices do 
not disturb the whole bilayer structure. But some local changes are observed for the 
neighboring lipids. In particular, the mobility of these DMPC molecules is significantly 
restricted comparing with the rest of the bilayer. Another effect consists in penetration of 
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water molecules into the hydrophobic part of the membrane. Analysis of hydrogen 
bonding of the peptides with water shows that water molecules can reach the residue 
His173 (Fig. 1b), which is situated approximately in the middle of the membrane. It 
should be noted that such diffusion of water was detected only in the N-terminal part of 
the dimer. Therefore, this can not be an artifact of the simulations. Instead, such a 
phenomen is determined by the dimer structure. 

And in conclusion, some notes should be made concerning the validity of the 
simulation results. To check their correctness, MD-data were compared with the 
experimental ones. Recently, the high-resolution structure of the TM dimer of BNIP3 in 
DMPC/DHPC bicelles was solved by NMR spectroscopy (Bocharov E.V. et al., 
manuscript in preparation). Inspection of the both (experimental and theoretical) models 
reveals that one of the predicted right-handed models is in a good agreement with the 
experimental one – they have similar packing and low (~1.5 Å) RMSD values. Moreover, 
NMR data point out to accessibility of the His173 residue to water – exactly the same 
conclusion was reached based on MD simulations. Also, NMR-derived models 
demonstrate some conformational exchange in the N-terminal regions of TM helices. 
Therefore, a proposal was made that the second predicted right-handed model can also be 
realized in the membrane-like environment. 
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