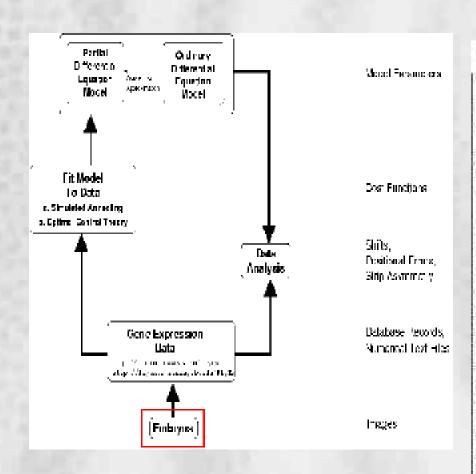


On joint research projects


Maria Samsonova
St.Petersburg State Polytechnical
University, Russia

Research focus

- methods and tools for acquisition of high-precision data;
- mathematical methods for data mining and system modeling;
- methods for data integration and information extraction.

Muhar

Systems biology of segmentation in Drosophila

Nature, v 430, 15 July 2004: 368-371

letters to nature

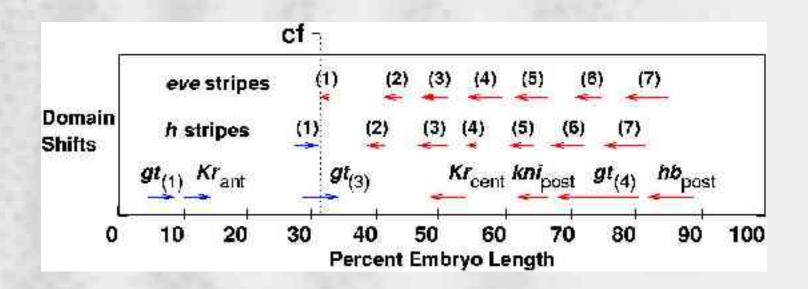
Dynamic centrol of positional intermation in the early *Drosophila* embryo

Irika mena Jenger , Sertium Schlever Maxier Binger , Hitte Jennamer , Devid Kennamer , Ferminette H. Kenter , Stene , Chatterina Sepantisme . Larint E. Tanget e Marine . Maria Samonare . Larint S. Winne . A John Robetta

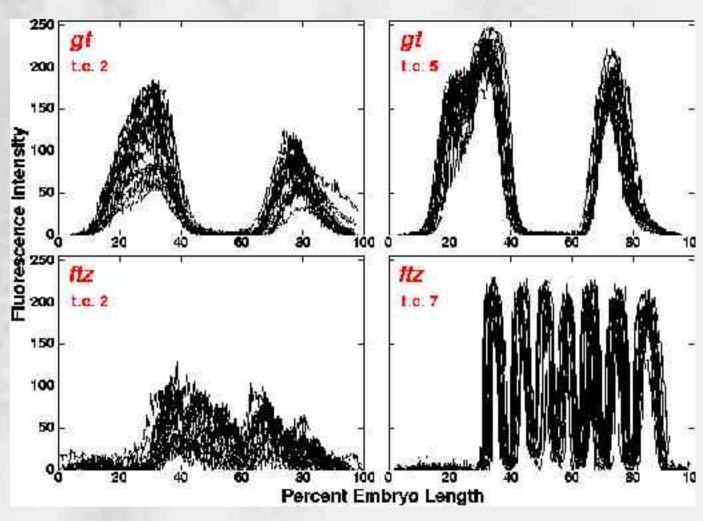
* Department of Applied Mechanist count for early, heavy must dispute for Hereinstein Scientist Adverse Week Charles Merry Burket, 1984 Burket Highways 1984

Superment of Corporational Bullety, Gester For Armand Studies.

pt theorem any Science Physical part, in Journal of Colombia and This St. Policies. To present any of Building L. Lindscorters of Colombia, Park J. Popul. In Operation Science, 1954.

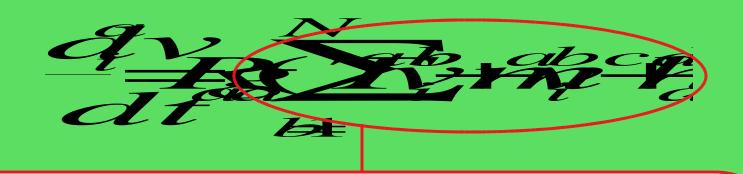

"It destroyed from the west famous fortified at the family the Charges of the State from the Property of the State famous for the state from the state from the state famous for the state famous famo

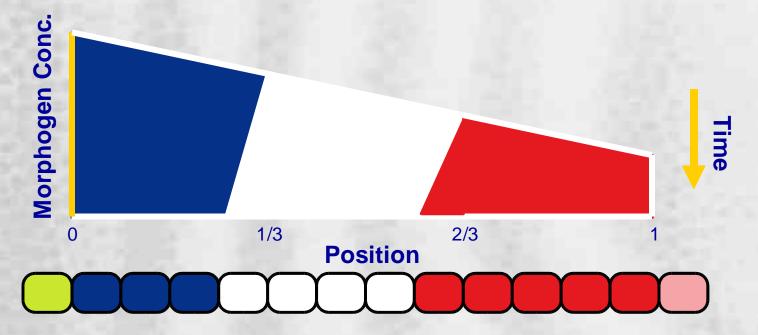
⁸ Applied (Rest) - Distincts, and Year on the Persons, year (Reston) (Vertical F. Laboratory, Sun Japanese, New Yorks, 1974), 1983.


Mor abouses genericada contribute to patrican formasico by detercollecting to delite and inflavorations in survey improvate the little 1-1. better predeficial of positional is becausing in thought to only me timet concentration-threshold-resident modianisms in extendialting multiple differential decreases of target power expression. In Decrephile, maximal gradients establish the Initial position of annualmits for appetic gap gone expression. wasth in turn occorr positional introduction to percend and accepted and write general the latter forming a segmental proparties by the exact of partralation". Here we report on the basic of quantitative gare expression data, inhabitatial antimer shifter as the projection of gap deposites after those sectoral autobiosis endes). All verg, a diete, die war endelkeiter ist auf mende iking vije nee aaf.? 📆 are show that these shalls are based on a regulatory mechanism. that relies on assumential gardigation or respective and does not require the diffraction of gap proteins. Our analysis trigins that the Mysical deligendant interpretation of crisis and morphogan contampression to more sufficient on descending a highlighting gap destrain. be under you might, and massess that attablishing and interpositing positional information are not independent processes in The Decomplete Physics beam.

Milm

Domains of gap and pair-rule gene expression in head and trunk regions move in opposite directions with time

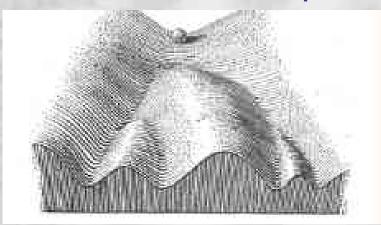

Variability in expression of zygotic segmentation genes

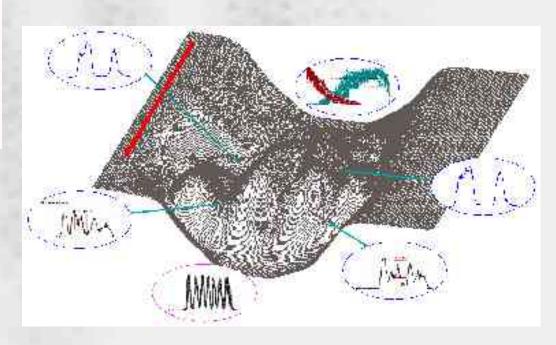

Dynamic dissection:

We can look at individual parts of this sum to 'dissect' the various regulatory contributions on a specific gene.

For example:

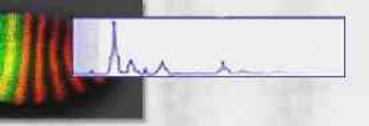
TKr->hb VKr represents Kr's regulatory input on hb


Conclusions: The French Flag Revisited


- > Posterior gap domains shift because of regulative crossinteractions.
- ➤ Positional information in early embryo is dynamic and can no longer be seen as a static coordinate system imposed on embryo by maternal genes.

Conclusions:

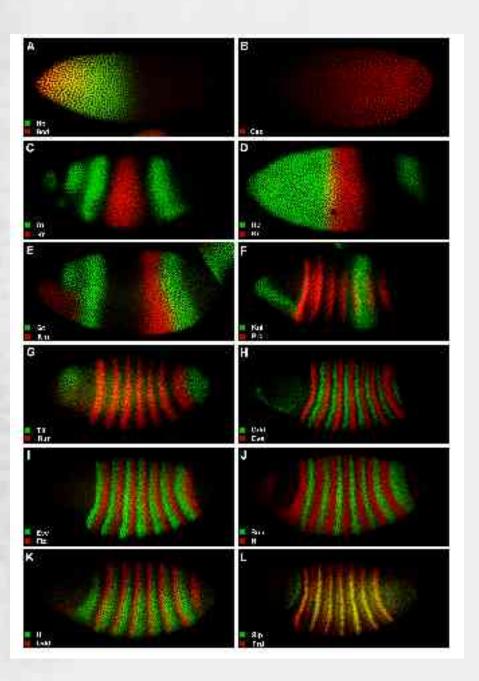
Waddington's concept of epigenetic landscape can be adopted to explain the pattern formation phenomenon (Cont.)

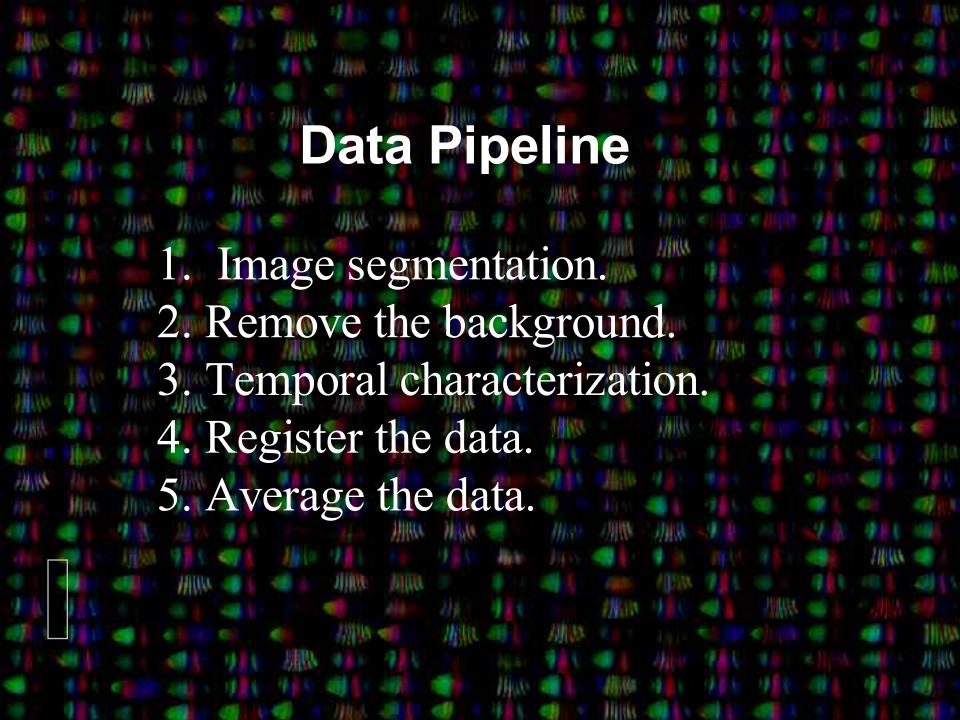


All kinds of variability inherent to expression patterns of segmentation genes are significantly decreased by gastrulation.

Mathematical modeling and statistical analysis of data

- Various statistical and machine learning methods are in use for data mining;
- Models based on ordinary and partial differential reactiondiffusion equations;
- Different optimization methods are available to find the system parameters:
 - Simulated Annealing
 - Optimal Steepest Descent Algorithm
 - Tunneling
 - Parallel Differential Evolution.

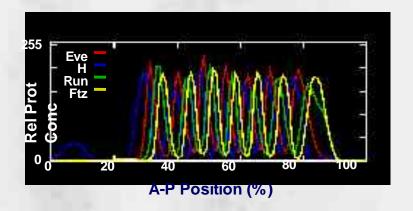


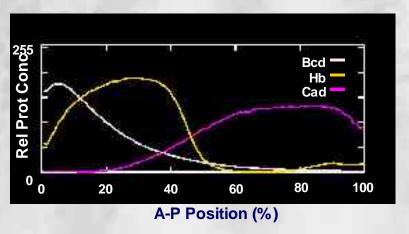

Open questions

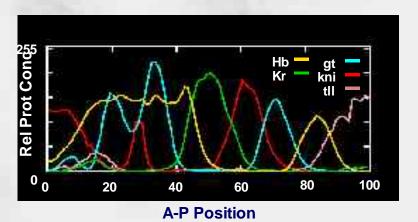
- Construction of models of biological systems and processes which operate on different time scales and/or complexity levels
- Approaches towards validation of existing models;
- Adequate representation of diffusion in models;
- Logics behind selection of relevant models to uncover the structure and dynamics of a particular biological system.

Acquisition of high-precision quantitative data: confocal scans of gene expression patterns

Myasnikova et al (2001), Bioinformatics 17:3-12






Quantitative data on segmentation gene expression with cellular resolution in space and temporal resolution of 6.5 minutes of development

Nuclear Fluorescence Coordinate intensities

-	_				
5	0	3.67346	41.5401	53.6951	25.939
	1	4.05099	45.3917	53.8919	27.0811
	2	4.00196	37.3767	54.7	22.85
	3	5.01298	39.8973	59.4688	26.5625
	4	5.07766	52.1475	58.8267	29.04
	5	5.44521	43.4772	62.25	30.5125
	6	5.52642	47.3609	56.7215	28.9494
	7	5.78564	36.9171	56.8689	26.2623
	8	6.26299	50.786	64.3521	30.6056
	9	6.62735	40.1422	59.3086	32.0123
	10	6.69946	54.7947	60.0795	29.5227

FlyEx database http://urchin.spbcas.ru/flyex; http://flyex.ams.sunysb.edu/flyex

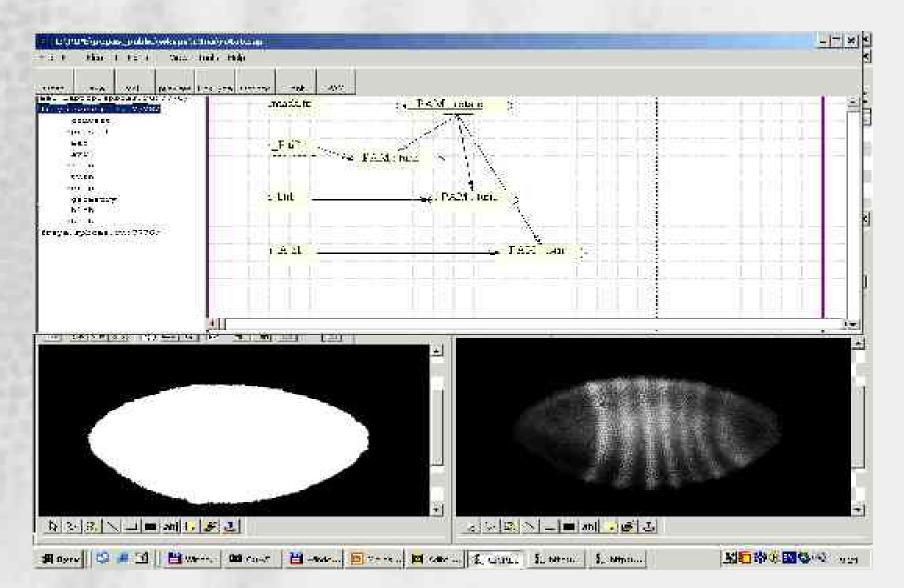
Muhre

Why the effective image processing packages are necessary to develop?

- we need high-precision quantitative data with high spatial resolution;
- different sophisticated microscope techniques are currently available;
- software packages provided by microscope manufactures are designed to produce a high-quality image. Usually do not support effective processing and analysis of images in batch.

Pro-stack package

("Prostack" means "a straight man" in Russian ;-))


Functionallity:

- Processing of stacks of images,
- More than 40 image processing methods, from thresholding to the calculation of object characteristics.
- The number of methods is growing.

Technical Data:

- Implemented in ANSI C as methods library libparus and command line interface prostack.
- All methods are available in distributed computing environment iSIMBioS via wrappers written in Perl.
- Can work with images in TIFF format with 8 bits per pixel using libtiff library for I/O operations.

Image processing scenario

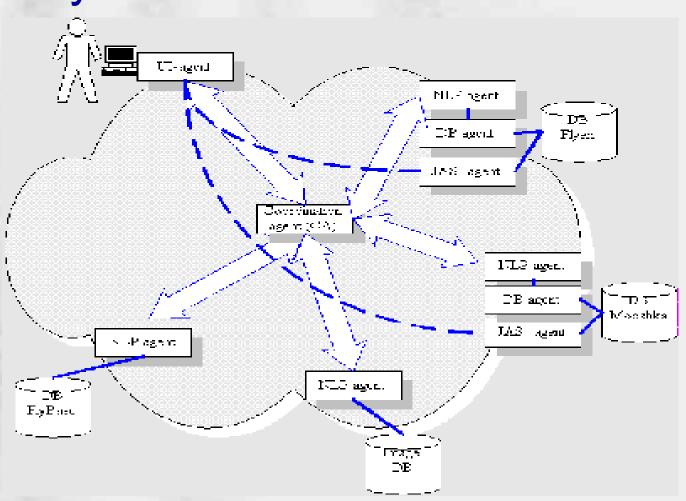
Data integration

- We have developed a method for integration of databases with common subject domain (http://urchin.spbcas.ru/NLP.htm).
- Now we propose to extend our approach to design an information management system for collaboration within distributed working environment.


Key Components of the method for integration of databases with common subject domain

- 1. Conceptual scheme of knowledge domain and domain oriented dictionaries.
- 3. Processor of natural language queries to a database.
- 5. Multiagent architecture to integrate results of information retrieval from different databases.

Conceptual Scheme


"is characterized by" ("EMBRYO", "DEVELOPMENTAL TIME")
"is an instance of" ("TIME FROM ONSET OF CYCLE 14A",
"DEVELOPMENTAL TIME")

"is derived from" ("TIME FROM ONSET OF CYCLE 14A", "INVAGINATING MEMBRANE"), etc.

Muhar

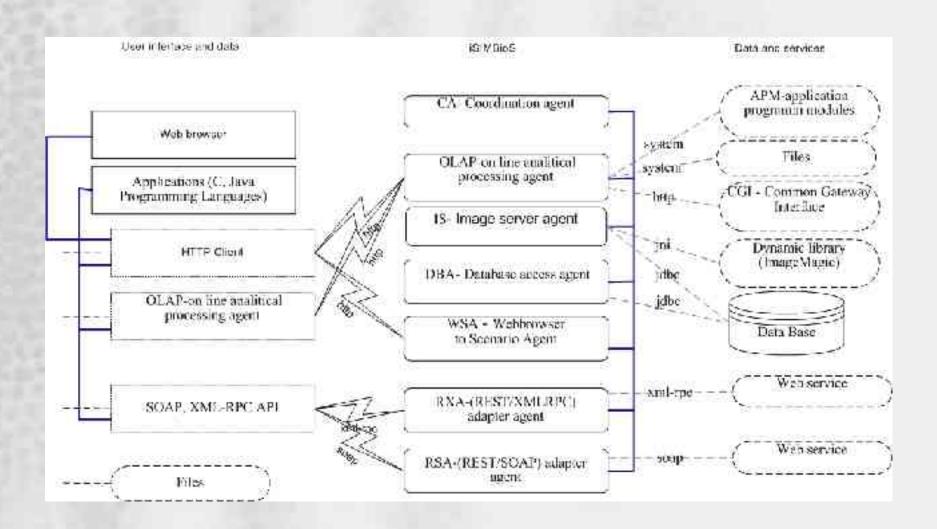
System architecture

iSIMBioS

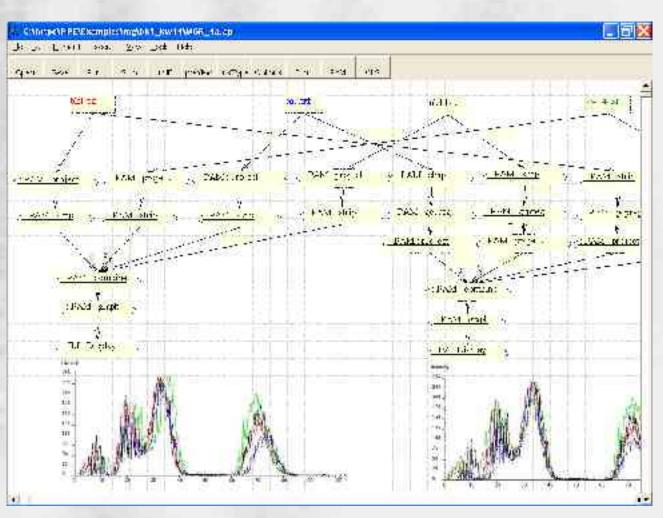
- ✓ fast and convenient access to data;
- ✓ data can be processed and analyzed by combining programs and services (modules) into workflows;
- ✓ workflow modules and data can be distributed over network;
- ✓ workflows can be constructed visually;
- ✓ simultaneous access of multiple users to shared data and methods;
- ✓ extendable, scalable and flexible in specification and modification of analysis methods;
- ✓ failure resistant, portable;
- ✓ provides access through firewall and proxy servers;
- ✓ dissemination of data and programs.

To appear in U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 204–215, 2006.

iSIMBioS store


- ✓ All data types.
- ✓ Information about
 - modules, workflows, workflow enactments,
 - system architecture,
 - distribution of data and programs among different servers,
 - users and user groups.

User policy - restricted access to private data.


Database structures can be extended dynamically, this makes storage independent from knowledge domain, i.e. allows to store new, not known in advance data.

Mur

iSIMBioS architecture

iSIMBioS workflow: estimation of the registration accuracy

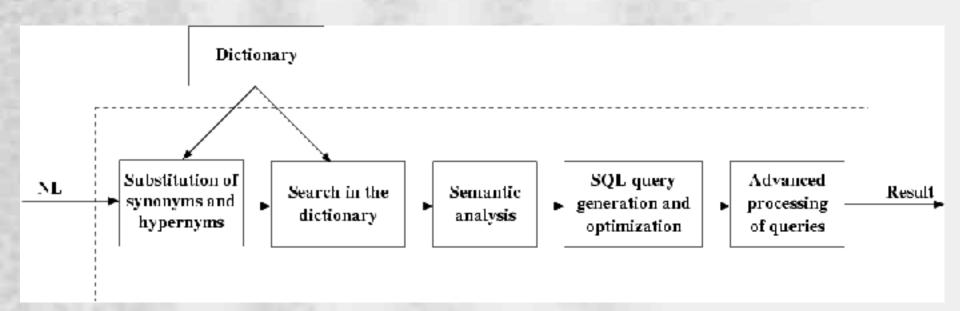
Information extraction

- We have developed a method for processing of natural language queries to a relational database (Samsonova et al. (2003) Bioinformatics 19, suppl. 1, i241-249).
- Now we propose to use NLP for information extraction from biomedical literature.

SPb SPU

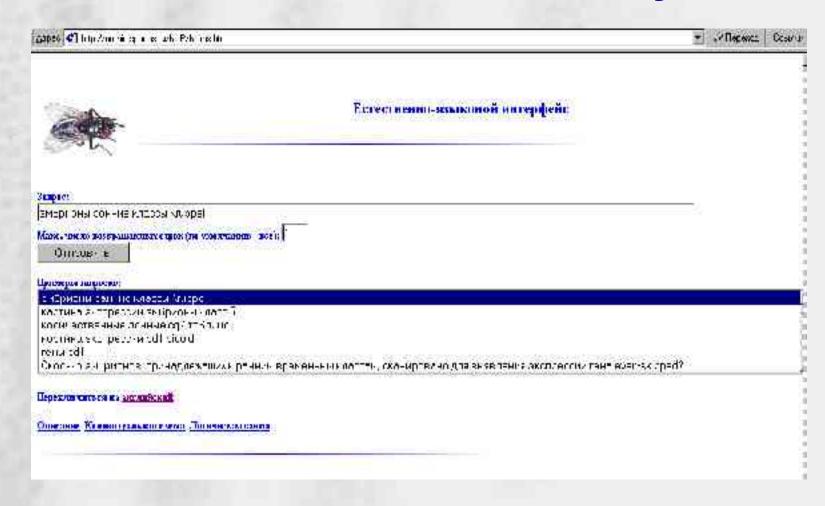
FlyEx database

Contains


- Images of segmentation gene expression in individual embryos.
- Quantitative data on segmentation gene expression in each nucleus of an individual embryo.
- Averaged data on expression of each segmentation gene at each time point and at cellular resolution.

Natural language interface is available at http://urchin.spbcas.ru/NLP/NLP.html

SPb SPU


Main Steps of Processing of a Query in NL

Russian Version of the Query Form

SPb SPU

Query can be formulated as a List of Keywords

`embryo Kr gt' or `Which embryos were scanned for expression of Kruppel and giant?'

Ang i <mark>(≱i</mark> wago Ang sis	:pbcas 1.09550/\uP7g. et, =emo	nio+Fir-d:+&ab=", e+3max; pc);=8e	epanded-trueškieve (di-feli		A 1 11 11 11
FlyEx Database					
f-atural language :	query (words used to rem	ieve the information from t	nsweis ers sasdetet er	ared color).	
Query result					
Enduşarnanın	Cleavage cycle	Temporal class	Grove 1	Century 2	Gene
<u>est</u>		PE300	oo nskipper	Emppel	gard
EARTO:	<u>제작</u>	2.00	ersen-skrippest	Knappel	gjast
<u>ERTT</u>	(Feb.)	U3 00	even-skippen	Emppel	giand
<u>Hi:12</u>	467	E 2 600	eren skippers	E rappel	giant
UK15	3/20	1000	over-skipped	Kruppel	giant
<u>BRIA</u>	1-	4 00	zo zawskajnych	Rimppel	special
EE-15	420	- # mn	eren-skipped	K majejsel	giant
eki -	12	4.00	even-skippen	Emporel	sisco

Information extraction

- In collaboration with Prof. Rubashkin (St.Petersburg State University) and Prof. Kolchanov (Institute for Cytology and Genetics of the RAS) groups.
- System prototype to automatically extract information about gene expression in *Arabidopsis thaliana*
 - text analysis in both automatic and interactive modes;
 - interactive training of the system by an expert;
 - use of text recognition and analysis algorithms;
 - relational database to store extracted information.

Acknowledgments

St.Petersburg

Alexander Samsonov
Vitaly Gursky
Konstantin Kozlov
Ekaterina Myasnikova
Andrei Pisarev
Ekaterina Poustelnikova
Svetlana Surkova

Stony Brook

John Reinitz
Jean Cadet
King-Wai Chu
Yuefan Deng
Hilde Janssens
Johannes Jaeger
Manu

San Diego

Dave Kosman

Los Alamos

Dave Sharp

Bielefeld

Ralf Hoffestadt

Novosibirsk

Nikolai Kolchanov. Nadezhda Omelyanchuk

http://urchin.spbcas.ru/flyex

http://flyex.ams.sunysb.edu/flyex