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Bas Reliefs

There are two bas reliefs at the entrance to this building of the
Physics and Mathematics School, the bas reliefs of Lavrentiev and
Lyapunov. The Physics and Mathematics School is not the only
school that unites the names of these persons.

Lavrentiev and Lyapunov were representatives of the greatest
scientific school of the tewentieth century, the school of Luzin. The
triumphs and tragedies of Luzin’s school is a hologram of the
triumphs and tragedies of the Soviet Russia. The fates of Lavrentiev
and Lyapunov are the worlf lines to good and light through the
turbulent fluxes of blood and evil.
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Lavrentiev, Lyapunov, and Luzin

Lavrentiev was one of the first students of Luzin and Lyapunov was
his last disciple. Lavrentiev edited the postmortem three volumes of
the selected works of Luzin to the annoiversary of the 70th years of
his birth. Lyapunov authored the formal obituary of Luzin which was
signed by a list of official state institutions. The last 14 years of his
life Luzin carried the badge of the “adversary in a Soviet mask” and
was an exemplary outcast of the Soviet scientific community, an
adversary, but an adversary free at large who is even not expelled
from the Academy of Sciences.

Many students of Luzin participated in his pursue and political
execution. Lavrentiev and Lyapunov never betrayed their teacher and
continued his deeds. The Physics and Mathematics School is a
juvenile affiliation of of the great Russian mathematical school of
Luzin. Remembering our teachers Lavrentiev and Lyapunov, we bow
to them and thank their mutual teacher, Nikolai Nikolaevich Luzin.
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Agenda

Linear inequality implies linearity and order. When combined, the two
produce an ordered vector space. Each linear inequality in the
simplest environment of the sort is some half-space. Simultaneity
implies many instances and so leads to the intersections of
half-spaces. These yield polyhedra as well as arbitrary convex sets,
identifying the theory of linear inequalities with convexity.

Convexity reigns in the federation of geometry, optimization, and
functional analysis. Convexity feeds generation, separation, calculus,
and approximation. Generation appears as duality; separation, as
optimality; calculus, as representation; and approximation, as
stability [1].

This talk addresses the origin and the state of the art of the relevant
areas with a particular emphasis on the Farkas Lemma [2]. Our aim is
to demonstrate how Boolean valued analysis may be applied to
simultaneous linear inequalities with operators.
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Elements, Book I

Mathematics resembles linguistics sometimes and pays tribute to
etymology, hence, history. Today’s convexity is a centenarian, and
abstract convexity is much younger.

Convexity traces back to the idea of a solid figure in plane geometry.
Book I of Euclid’s Elements [3] reads:

Definition 13. A boundary is that which is an extremity of anything.

Definition 14. A figure is that which is contained by any boundary or

boundaries.
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Elements, Book XI

Narrating solid geometry in Book XI, Euclid traveled from solid to
surface:

Definition 1. A solid is that which has length, breadth, and depth.

Definition 2. An extremity of a solid is a surface.

Definition 9. Similar solid figures are those contained by similar planes equal

in multitude.

Definition 10. Equal and similar solid figures are those contained by similar

planes equal in multitude and magnitude.
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The Three Polymaths

Convexity and inequality stem from the remote ages [5]–[7]. But as
the acclaimed pioneers who propounded these ideas and anticipated
their significance for the future, we must rank the three polymaths:

Joseph-Louis Lagrange (January 25, 1736–April 10, 1813)

Jean-Baptiste Joseph Fourier (March 21, 1768–May 16, 1830)

Hermann Minkowski (June 22, 1864–January 12, 1909)
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Joseph Lagrange (1736–1813)

In both research and exposition, he totally reversed the methods of his

predecessors. They had proceeded in their exposition from special cases by a

species of induction; his eye was always directed to the highest and most

general points of view. . . . (Thomas J. McCormack [8])
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Joseph Fourier (1768–1830)

He [Fourier] himself was neglected for his work on inequalities, what he

called “Analyse indéterminée.” Darboux considered that he gave the subject

an exaggerated importance and did not publish the papers on this question

in his edition of the scientific works of Fourier. Had they been published,

linear programming and convex analysis would be included in the heritage of

Fourier. (Jean-Pierre Kahane [9])
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Hermann Minkowski (1864–1909)

Our science, which we loved above all else, brought us together; it seemed

to us a garden full of flowers.̇.. In it, we enjoyed looking for hidden pathways

and discovered many a newperspective that appealed to our sense of beauty

and when one of us showed it to the other and we marvelled over it

together, our joy was complete. He was for me a rare gift from heaven. . . .

and I must be grateful to have possessed that gift for so long. Now death

has suddenly torn him from our midst. However, what death cannot take

away is his noble image in our hearts and the knowledge that his spirit in us

continue to be active. (David Hilbert [10])
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Convexity as Abstraction

Stretching a rope taut between two stakes produces a closed straight
line segment, the continuum in modern parlance. Rope-stretching
raised the problem of measuring the continuum. The continuum
hypothesis of set theory is the shadow of the ancient problem of
harpedonaptae. Rope-stretching independent of the position of stakes
is uniform with respect to direction in space. The mental experiment
of uniform rope-stretching yields a compact convex figure.

Convexity has found solid grounds in set theory. The Cantor paradise
became an official residence of convexity. Abstraction becomes an
axiom of set theory. The abstraction axiom enables us to reincarnate
a property, in other words, to collect and to comprehend. The union
of convexity and abstraction was inevitable. This yields abstract
convexity [11]–[13].
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Environment for Convexity

Let E be a vector lattice E with the adjoint top > := +∞ and
bottom ⊥ := −∞. Assume further that H is some subset of E that is
by implication a (convex) cone in E , and so the bottom of E lies
beyond H. A subset U of H is convex relative to H or H-convex
provided that U is the H-support set UHp := {h ∈ H : h ≤ p} of some

element p of E . Limiting finite subsets of H-convex sets yields some
analogs of polyhedra.

An element p ∈ E is H-convex provided that p = sup UHp ; i.e., p
represents the supremum of the H-support set of p. The proper
H-convex elements fill the cone C (H,E ). The Minkowski duality
ϕ : p 7→ UHp enables us to study convex elements and sets
simultaneously.
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Lyapunov’s Convexity Theorem

The celebrated Lyapunov Convexity Theorem had raised the problem
of describing the compact convex sets in finite-dimensional real spaces
which serve as the ranges of diffuse measures. These compacta are
known in the modern geometrical literature as zonoids. Among
zonoids we distinguish the Minkowski sums of finitely many straight
line segments. These sets, called zonotopes, fill a convex cone in the
space of compact convex sets, and the cone of zonotopes is dense in
the closed cone of all zonoids. The description of the ranges of diffuse
vector measures in the Lyapunov Convexity Theorem was firstly found
by Chŭıkina practically in the modern terms (see[14]). Soon after
that her result was somewhat supplemented and simplified by
Glivenko in [15]. The zonotopes of the present epoch were called
parallelohedra those days.
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Zonoids

The significant further progress in studying the ranges of diffuse
vector measures belong to Reshetnyak and Zalgaller who described
zonoids as the results of mixing the linear elements of a rectifiable
curve in a finite-dimensional space in 1954 (see [16]). In this same
paper they suggested a new prove of the Lyapunov Convexity
Theorem and demonstrated that zonotopes are precisely those convex
polyhedra whose two-dimensional faces have centers of symmetry.
Unfortunately, these results remained practically unnoticed in the
West. Analogous results were obtained by Bolker only fifteen years
later in 1969 (see [17], [18]).
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Bang-Bang

The Lyapunov Convexity Theorem was the key point in justification
of the “bang-bang” principle in optimal control. “Bang-bang” means
that the optimal controls are implemented by the extreme points of
the set of admissible controls.

In more detail: For optimal transition in minimal time from one state
of a system to the other in the conditions of limited resources one can
use an extreme “bang-bang” control.

S. S. Kutateladze (Sobolev Institute) Convexity and Inequality October 13, 2011 15 / 36



Bang-Bang

The Lyapunov Convexity Theorem was the key point in justification
of the “bang-bang” principle in optimal control. “Bang-bang” means
that the optimal controls are implemented by the extreme points of
the set of admissible controls.

In more detail: For optimal transition in minimal time from one state
of a system to the other in the conditions of limited resources one can
use an extreme “bang-bang” control.

S. S. Kutateladze (Sobolev Institute) Convexity and Inequality October 13, 2011 15 / 36



Bang-Bang

The Lyapunov Convexity Theorem was the key point in justification
of the “bang-bang” principle in optimal control. “Bang-bang” means
that the optimal controls are implemented by the extreme points of
the set of admissible controls.

In more detail: For optimal transition in minimal time from one state
of a system to the other in the conditions of limited resources one can
use an extreme “bang-bang” control.

S. S. Kutateladze (Sobolev Institute) Convexity and Inequality October 13, 2011 15 / 36



Environment for Inequality

Assume that X is a real vector space, Y is a Kantorovich space also
known as a complete vector lattice or a Dedekind complete Riesz
space. Let B := B(Y ) be the base of Y , i.e., the complete Boolean
algebras of positive projections in Y ; and let m(Y ) be the universal
completion of Y . Denote by L(X ,Y ) the space of linear operators
from X to Y . In case X is furnished with some Y -seminorm on X , by
L(m)(X ,Y ) we mean the space of dominated operators from X to Y .
As usual, {T ≤ 0} := {x ∈ X | Tx ≤ 0}; ker(T ) = T−1(0) for
T : X → Y . Also, P ∈ Sub(X ,Y ) means that P is sublinear, while
P ∈ PSub(X ,Y ) means that P is polyhedral, i.e., finitely generated.
The superscript (m) suggests domination.

S. S. Kutateladze (Sobolev Institute) Convexity and Inequality October 13, 2011 16 / 36



Environment for Inequality

Assume that X is a real vector space, Y is a Kantorovich space also
known as a complete vector lattice or a Dedekind complete Riesz
space. Let B := B(Y ) be the base of Y , i.e., the complete Boolean
algebras of positive projections in Y ; and let m(Y ) be the universal
completion of Y . Denote by L(X ,Y ) the space of linear operators
from X to Y . In case X is furnished with some Y -seminorm on X , by
L(m)(X ,Y ) we mean the space of dominated operators from X to Y .
As usual, {T ≤ 0} := {x ∈ X | Tx ≤ 0}; ker(T ) = T−1(0) for
T : X → Y . Also, P ∈ Sub(X ,Y ) means that P is sublinear, while
P ∈ PSub(X ,Y ) means that P is polyhedral, i.e., finitely generated.
The superscript (m) suggests domination.

S. S. Kutateladze (Sobolev Institute) Convexity and Inequality October 13, 2011 16 / 36



Kantorovich’s Theorem

Find X satisfying

X

B   A
AA

AA
AA

A
A //W

X
��

Y

(1): (∃X) XA = B ↔ ker(A) ⊂ ker(B).

(2): If W is ordered by W+ and A(X )−W+ = W+ − A(X ) = W ,
then1

(∃X ≥ 0) XA = B ↔ {A ≤ 0} ⊂ {B ≤ 0}.

1Cp. [24, p. 51].
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The Farkas Alternative

Let X be a Y -seminormed real vector space, with Y a Kantorovich
space. Assume that A1, . . . ,AN and B belong to L(m)(X ,Y ).
Then one and only one of the following holds:
(1) There are x ∈ X and b, b′ ∈ B such that b′ ≤ b and

b′Bx > 0, bA1x ≤ 0, . . . , bANx ≤ 0.

(2) There are positive orthomorphisms α1, . . . , αN ∈ Orth(m(Y ))+
such that B =

∑N
k=1 αkAk .
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Boolean Modeling

Cohen’s final solution of the problem of the cardinality of the
continuum within ZFC gave rise to the Boolean valued models by
Scott, Solovay, and Vopěnka.2

Takeuti coined the term “Boolean valued analysis” for applications of
the models to analysis.3

2Cp. [19].
3Cp. [20].
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Scott’s Comments

Scott forecasted in 1969:4

We must ask whether there is any interest in these nonstandard models

aside from the independence proof; that is, do they have any mathematical

interest? The answer must be yes, but we cannot yet give a really good

argument.

In 2009 Scott wrote:5

At the time, I was disappointed that no one took up my suggestion. And

then I was very surprised much later to see the work of Takeuti and his

associates. I think the point is that people have to be trained in Functional

Analysis in order to understand these models. I think this is also obvious

from your book and its references. Alas, I had no students or collaborators

with this kind of background, and so I was not able to generate any progress.

4Cp. [21].
5Letter of April 29, 2009 to S. S. Kutateladze.
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Boolean Valued Universe

Let B be a complete Boolean algebra. Given an ordinal α, put

V (B)α := {x | (∃β ∈ α) x : dom(x)→ B & dom(x) ⊂ V
(B)
β }.

The Boolean valued universe V(B) is

V(B) :=
⋃

α∈On
V (B)α ,

with On the class of all ordinals.

The truth value [[ϕ]] ∈ B is assigned to each formula ϕ of ZFC
relativized to V(B).
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Descending and Ascending

Given ϕ, a formula of ZFC, and y , a member of VB; put
Aϕ := Aϕ(·, y) := {x | ϕ(x , y)}.
The descent Aϕ↓ of a class Aϕ is

Aϕ↓ := {t | t ∈ V(B) & [[ϕ(t, y)]] = 1}.

If t ∈ Aϕ↓, then it is said that t satisfies ϕ(·, y) inside V(B).

The descent x↓ of x ∈ V(B) is defined as

x↓ := {t | t ∈ V(B) & [[t ∈ x ]] = 1},

i.e. x↓ = A·∈x↓. The class x↓ is a set.

If x is a nonempty set inside V(B) then

(∃z ∈ x↓)[[(∃t ∈ x) ϕ(t)]] = [[ϕ(z)]].

The ascent functor acts in the opposite direction.
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The Reals Within

There is an object R inside V(B) modeling R, i.e.,

[[R is the reals ]] = 1.

Let R↓ be the descent of the carrier |R| of the algebraic system
R := (|R|,+, · , 0, 1,≤) inside V(B).

Implement the descent of the structures on |R| to R↓ as follows:

x + y = z ↔ [[x + y = z ]] = 1;

xy = z ↔ [[xy = z ]] = 1;

x ≤ y ↔ [[x ≤ y ]] = 1;

λx = y ↔ [[λ∧x = y ]] = 1 (x , y , z ∈ R↓, λ ∈ R).

Gordon Theorem.6 R↓ with the descended structures is
a universally complete vector lattice with base B(R↓) isomorphic to B.

6Cp. [19, p. 349].
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Counterexample: No Dominance

Lemma 1, describing the consequences of a single inequality, does not
restrict the class of functionals under consideration.

The analogous version of the Farkas Lemma simply fails for two
simultaneous inequalities in general.

The inclusion {f = 0} ⊂ {g ≤ 0} equivalent to the inclusion
{f = 0} ⊂ {g = 0} does not imply that f and g are proportional in
the case of an arbitrary subfield of R. It suffices to look at R over the
rationals Q, take some discontinuous Q-linear functional on Q and the
identity automorphism of Q.
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Inhomogeneous Inequalities

Let X be a Y -seminormed real vector space, with Y a Kantorovich
space. Assume given some dominated operators
A1, . . . ,AN ,B ∈ L(m)(X ,Y ) and elements u1, . . . , uN , v ∈ Y . The
following are equivalent:
(1) For all b ∈ B the inhomogeneous operator inequality bBx ≤ bv is
a consequence of the consistent simultaneous inhomogeneous
operator inequalities bA1x ≤ bu1, . . . , bANx ≤ buN , i.e.,

{bB ≤ bv} ⊃ {bA1 ≤ bu1} ∩ · · · ∩ {bAN ≤ buN}.

(2) There are positive orthomorphisms α1, . . . , αN ∈ Orth(m(Y ))
satisfying

B =
N∑

k=1

αkAk ; v ≥
N∑

k=1

αkuk .
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Sublinear Inequalities

Let X be a Y -seminormed real vector space, with Y a Kantorovich
space. Given are some dominated polyhedral sublinear operators
P1, . . . ,PN ∈ PSub(m)(X ,Y ) and a dominated sublinear operator
P ∈ Sub(m)(X ,Y ). Assume further that u1, . . . , uN , v ∈ Y make
consistent the simultaneous inhomogeneous inequalities
P1(x) ≤ u1, . . . ,PN(x) ≤ uN .
The following are equivalent:
(1) for all b ∈ B the inhomogeneous sublinear operator inequality
bP(x) ≥ bv is a consequence of the simultaneous inhomogeneous
sublinear operator inequalities bP1(x) ≤ bu1, . . . , bPN(x) ≤ buN , i.e.,

{bP ≥ bv} ⊃ {bP1 ≤ bu1} ∩ · · · ∩ {bPN ≤ buN};
(2) there are positive α1, . . . , αN ∈ Orth(m(Y )) satisfying

(∀x ∈ X ) P(x) +
N∑

k=1

αkPk(x) ≥ 0,
N∑

k=1

αkuk ≤ −v .
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bP(x) ≥ bv is a consequence of the simultaneous inhomogeneous
sublinear operator inequalities bP1(x) ≤ bu1, . . . , bPN(x) ≤ buN , i.e.,

{bP ≥ bv} ⊃ {bP1 ≤ bu1} ∩ · · · ∩ {bPN ≤ buN};
(2) there are positive α1, . . . , αN ∈ Orth(m(Y )) satisfying

(∀x ∈ X ) P(x) +
N∑

k=1

αkPk(x) ≥ 0,
N∑

k=1

αkuk ≤ −v .
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Lagrange’s Principle

The finite value of the constrained problem

P1(x) ≤ u1, . . . ,PN(x) ≤ uN , P(x)→ inf

is the value of the unconstrained problem for an appropriate
Lagrangian without any constraint qualification other that
polyhedrality.

The Slater condition allows us to eliminate polyhedrality as well as
considering a unique target space. This is available in a practically
unrestricted generality [24].

About the new trends relevant to the Farkas Lemma see [25]–[29].
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Freedom and Inequality

Convexity is the theory of linear inequalities in disguise, tailored by set
theory with a plentitude of bizarre visualizations of the figments of
intuition.
Abstraction is the freedom of generalization. Freedom is the loftiest
ideal and idea of man, but it is demanding, limited, and vexing. So is
abstraction. So are its instances in convexity, hence, in simultaneous
inequalities.
Convexity and inequality supersede linearity because there are
inequalities other than interpretations of simultaneous equalities.
Inequality is the first and foremost phenomenon of being. Equality is
second historically, linguistics notwithstanding.
The freedom of set theory empowered us with the profusion of models
yielding a plentitude of bizarre visualizations of the ingredients of
mathematics.
Freedom presumes liberty and equality. Inequality paves way to
freedom.
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