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Our main goal is to give a mathematical 

explanations, and predictions to numerical 

experiments with nonlinear dynamical systems  

of chemical kinetics considered as models  

 of gene networks  regulated by combinations  

of negative and positive feedbacks.  

In our previous publications on the gene  

networks modeling we have considered  

the particular cases of very special types  

of the right hand sides of the equations. 
  

A.N.Kolmogorov, I.G.Petrovskii, N.S.Piskunov 

Moscow University Herald, 1937. 
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1. Some simple gene networks models.  
 
We study odd-dimensional dynamical systems   (2k+1)   
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                                      are smooth and monotonically 
decreasing.   This corresponds to the negative feedbacks  

in the gene networks. 
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P 1. Each system of the type (2k+1) has exactly one  
stationary point        in the positive octant:  
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is an invariant domain of the system (2k+1). +(2k) 
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Non-convex 3D invariant domain in Q 

composed by six triangle prisms.  
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Hastings S., 
Tyson J.,   
Webster D.  
(1977) 



Theorem 1.  If the stationary point        is 

hyperbolic then the system (2k+1) has at 

least one periodic trajectory in the invariant 

domain Q.  

 
 The following diagram (D) shows the discrete scheme of 

some of the trajectories of the system (2k+1).  
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 }01...0010{}01...1010{ ...}01...010010{}01...01101{ 

 }100...1010{}0110...1010{

0S

We reduce this invariant domain Q to the union of 4k+2 
triangle prisms in order to localize the position of the cycle. 
  
 Then existence of periodic trajectories follows   
from the  Brower’s fixed point theorem. 
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A trajectory and a limit cycle. 
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Below we demonstrate projections  
of trajectories of symmetric 5-D system 

 onto 2-D and 3-D planes. 
  
Theorem 1′. If the dynamical system (2k+1) in the 

Th.1 is symmetric with respect to the cyclic 
permutation of the variables then the system  

   has a cycle  with corresponding symmetry.  
 

 

,...
1

18
3

1

i

i

i x
xdt

dx







;5,4,3,2,1i

7/50 

).2,2,2,2,2(0 S



8 

.0ReRe 54  

Projections of trajectories of 5-D system onto 
the 2-D plane corresponding to  



9 Projections of trajectories of the 5-D system onto 
the 3-D plane corresponding to the eigenvalues 
with positive real parts and the negative 
eigenvalue               of the linearization matrix. 01 

The blue spot shows the position of projection of the stationary point.  



The characteristic polynomial of the linearization of the 
system (2k+1) at the stationary  point       has the form  
                                      
                                 Here                is the product of all 
derivatives                at the point       .   
 
We arrange the eigenvalues of this linearization  
 according to the values of their real parts:   

The eigenvalue      is real and negative. So,   

If the point        is hyperbolic then none of these 
real parts vanishes.     

If k=2 then  
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Eigenvalues of one 9-D  
symmetric dynamical system 
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Trajectories of 9-D symmetric system  
                           
                                 projected onto 3D-planes corresponding   
                                to different eigenvectors of the                       
                                linearization of this system near  
                                the stationary point. The trajectories                       
                                are contained in (D). 
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Similar results can be obtained for the 

systems of the types                                 

 

                                ,                                   
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The eigenvalues of A can be expressed explicitly: 

η >0. 

2. Stability questions.   



The transfer matrix   

Let  
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        i = 1,2,… be its norm. 
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Theorem 2. If the system (2k+1) satisfies  

the conditions of the theorem 1 and      

     

                                                                                                                                

 

for some positive   η     then the invariant domain  

Q’  contains a stable cycle of this system.   

  

Russel Smith has shown that if 
1))((||  X

then the system (VM) has a stable cycle (1987).  

 Actually, he notes that this is not a sharp estimate!! 
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3. Nonuniqueness of cycles  
in the system (2k+1).  

According to the Grobman-Hartmann theorem,  
each nonlinear dynamical system can be linearized  
in some neighborhood W  of its hyperbolic point.  
 

Consider in W  2-D planes corresponding to pairs   
of the eigenvalues with positive real parts.  

   These planes are composed by unwinding 
trajectories  of the dynamical system (2k+1). 

  

Hypothesis 1:  Outside of  W  different 2-D    
           planes  generate different (??) cycles.  
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Eigenvalues of one 9-D  
symmetric dynamical system 
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Projections of two different cycles of 9-D 
symmetric system onto 3-D plane 
The second cycle is not contained in (D). 

The stationary point is at the top of the picture. 
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Projections of two different cycles of  
11-D symmetric system onto  
two different 3-D planes 

 

                  left;                           right.  981 ,, 
11101 ,, 
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Projections of  3 cycles of 15-dimensional 
system onto the plane  ., 1110 
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Same system and plane, 5 cycles. 
 Hypothesis 2: Continuum of cycles??? 
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4. Model of 3-D gene network regulated 

by a simple combination of negative  

and positive feedbacks.   

system (ffΛ): 
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Let                  be the maximal value of  

and                 is the inverse function to   

 

Lemma 1.    Let                                        

 

and either   

        or                                                 for  

Then the system (ffΛ) has exactly one stationary  

point                          in the positive octant.  

 

 

Let                          be defined by                            
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Linearization of system (1) at this point   

                           is described by the matrix with  

one negative eigenvalue.  

Its other eigenvalues                are complex.          

  Consider the case  

 
.0ReRe 32  

32 , 

 ‏(+)

Theorem “1”.  If the condition (+) is satisfied  

then the system (ffΛ): has at least one  

periodic trajectory.  
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The proof is based on existence of an invariant 

domain of the system (ffΛ). This is the 

parallelepiped   

 

Actually, one can construct essentially smaller   

invariant domain (see below).  

Now, existence of periodic trajectories follows  

from the Brower fixed point theorem, as usual.  

 

Recall that 
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Trajectories of the system (ffΛ)  
 
right: 
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5. More complicated gene networks 

models regulated by combinations of 

positive and negative feedbacks. 

system (fΛΛ): 
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Stationary points of the system (fΛΛ). 

I 

II 

III 
IV 

V 
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Stationary points  I and II of the system (fΛΛ): 

I 

II 
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Analogs of the theorems 1 and 2 
about existence of a cycle and 
existence of a stable cycle hold in 
the neighborhoods of the 
stationary points I and III.  

 

The stationary point  V  is stable.  

The stationary points II and IV have 
topological index +1.  



I 

I 

. 
. 

31 Two variants of constructions of invariant 
neighborhood of the stationary point  I  of  
the system (fΛΛ): 





 рублей. Stationary points and cycles of the system (fΛΛ): 
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Stationary points and cycles of the system  
(fΛΛ)  (same parameters, other trajectories). 
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5. Glass-Mackey-type systems. 

Ricker function. 
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(w)=rw(–w)  Logistic function.             (L)   
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Each of the systems listed here has exactly 7  

stationary points in some invariant domain  

If the parameters of the system are  

sufficiently large.  

 

The origin is also stationary point of each of  

these systems, but it does not seem to be  

so interesting. 
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Positions of the stationary points of the  

Glass-Mackey system  (GM). 
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Topological indices of the 
stationary points  

Topological indices of the points marked by “+”  
 
equal +1, their Conley indices are :                   . 1)( Sh 

.  Topological indices of the points marked by “-”  
 
equal -1, their Conley indices are :                    . 

2)( Sh 
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The cycles of the Glass-Mackey type systems 
do appear near the stationary points  

with negative indices. 
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   For the stationary point marked by  

green minus, we have proved analogs  

of the theorems 1 and 2 about existence  

of a (stable) cycle.  

 

Numerical experiments show existence  

   of cycles near the   1-st, 3-d   and the 
7-th stationary points marked by blue 
minuses.   



Cycles                                of the system (Λ). 
 

  =10,  m=5, q=0. 
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Same cycles of the system  (Λ).   =10,  m=5, q=0. 
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Same cycles in  (Λ).   Similar pictures  

were observed in the systems (GM), (L). 
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Cycles                                                           of the 

system (GM).  α=4.3, γ=17.25.‏Projections onto 

the plane Z=0. 
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Our current tasks are connected with:  

    determination of conditions of regular 

behavior of  trajectories;  

    studies of integral manifolds and     

    nonuniqueness of the cycles,  

    bifurcations of the cycles;  

   their dependence on the variations of 

the parameters, and  

    connections of these models with  

discrete models of the Gene Networks. 
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APPENDIX:    D.P.Furman, T.A.Bukharina  
     The Gene Network Determining Development  
of  Drosophila Melanogaster Mechanoreceptors.  
Comp. Biol.Chemistry, 2009, v.33, pp. 231 – 234. 

The scheme  

of the  

nonlinear   

system (DM),  

see below.  

A1 

CHN=charlatan. 



More complicated model. A2 



We study dynamics  
of the above gene network model. 

x=[AS-C], 

y=[HAIRY], 

z=[SENS], 

u=[SCRT], 

w=[CHN]  

concentrations. 

D=[DA],  

G=[GRO],  

E=[EMC]  

parameters. 
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Sigmoid functions 

describe the positive feedbacks on the previous slide.   

(DM) 
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Graph of 

and the stationary points of the system (DM).   

Stationary points “I” and “III” are stable,  

the point “II” is unstable.   Ind(I)=ind(III)= -1;  Ind(II) = +1. 
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Thank you for your attention 
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A trajectory convergent to the bifurcation cycle.   

(in cooperation with A.G.Kleshchev)‏ 
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A trajectory and a bifurcation cycle. 
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A trajectory and a bifurcation cycle. 


