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Our main goal Is to give a mathematical

explanations, and predictions to numerical
experiments with nonlinear dynamical systems
of chemical kinetics considered as models
of gene networks regulated by combinations
of negative and positive feedbacks.
In our previous publications on the gene
networks modeling we have considered
the particular cases of very special types
of the right hand sides of the equations.

A.N.Kolmogorov, I.G.Petrovskii, N.S.Piskunov
Moscow University Herald, 1937.



1. Some simple gene networks models. **°

We study odd-dimensional dynamical systems (2k+1)

d X,

_ , d X
F: fl(X2k+1) — X F: fz (Xl)_XZ"" d2:+1 = f2k+1(X2k) — Xoka -

The functions f,(u) >0 are smooth and monotonically
decreasing. This corresponds to the negative feedbacks
In the gene networks.

P 1. Each system of the type (2k+1) has exactly one
stationary point S_ In the positive octant:

X = fl(f2k+1(f2k (fZ(Xl))
P2. Q=[0, f,(0)]x[0, f,(0)]x...[0, f,,,(0)]
IS an invariant domain of the system (2k+1). +(2k)
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Non-convex 3D invariant domain in Q #°°

composed by six triangle prisms.
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Theorem 1. If the stationary point S, is >
hyperbolic then the system (2k+1) has at

least one periodic trajectory Iin the invariant
domain Q.

The following diagram (D) shows the discrete scheme of
some of the trajectories of the system (2k+1).

£1010...01% —»{0010...01% —> {01101...01} —>{010010...01} —> ...

—5{1010...0110} —>{1010...100} —>

We reduce this invariant domain Q to the union of 4k+2
triangle prisms in order to localize the position of the cycle.

Then existence of periodic trajectories follows
from the Brower’s fixed point theorem.



A trajectory and a limit cycle.
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(ul.u2.u’l). (rol.m2.ro3)
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Below we demonstrate projections
of trajectories of symmetric 5-D system

o __ 18
dt  1+x°,

~X 1212345 S, =(222,2,2).

onto 2-D and 3-D planes.

Theorem 1'. If the dynamical system (2k+1) in the
Th.1 is symmetric with respect to the cyclic
permutation of the variables then the system
has a cycle with corresponding symmetry.
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Projections of trajectories of the 5-D system onto ¢
the 3-D plane corresponding to the eigenvalues

with positive real parts and the negative
eigenvalue 4 <0 of the linearization matrix.

The blue spot shows the position Of projection of the stationary point.

(x1, 51,20, (rpl,1p2,1p3) (x1,¥1,z1),(rpl1p2,1p3)



The characteristic polynomial of the linearization of the w0

system (2k+1) at the stationary point S, has the form

A+ A" +11*" =0. Here —11%** is the product of all
derivatives of; /o, atthe point S .

We arrange the eigenvalues of this linearization
according to the values of their real parts:

The eigenvalue 4, 1s real and negative. So,
A <ReA,; <ReA,; <..Red, 5.1

If the point S, is hyperbolic then none of these
real parts vanishes.

If k=2 then 4 <Re4,,<0.
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Eigenvalues of one 9-D
symmetric dynamical system

x_1: [2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000]
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Trajectories of 9-D symmetric system

dx. 130 projected onto 3D-planes corresponding
1oyt Xi»- to different eigenvectors of the
i—1 ; ; ; "
linearization of this system near
the stationary point. The trajectories

are contained in (D).

A As A7 A Ags A




Similar results can be obtained for the

systems of the types
dx
d—tl = 1,(X3) —9(x,) , % = 1,(%) = 9(X,),
dx, ok oF
E _ Fi (Xi_l Xi) axi <0, axi_l <0,
etc.

M.Hirsch (1987).
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2. Stability questions.

d—X:A-X+\P(X); (VM)
dt
(-1 0 -n (n-z+ f,(2) )
A=l-n -1 0,  Y(X)=|n-x+1,(x)].
0 -7 -1 7Y+ T5(Y),)
n =>0.

The eigenvalues of A can be expressed explicitly:
A (A) =-1-7iRe Ay 5,0 (A) = ..
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The transfer matrix
y(lo-1+v) =((lo-1+v)E-A -+

u(v)=sup| y(lo-1+v)|.

Let W'(X) bethe Jacobi matrix of W(X),
and let |y [= max sup(| 47+ 1))
| X

1 =1,2,... be its norm.
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Russel Smith has shown that if | ¥} |< (u(v))™

then the system (VM) has a stable cycle (1987).
Actually, he notes that this Is not a sharp estimate!!

Theorem 2. If the system (2k+1) satisfies

the conditions of the theorem 1 and
27T . T

.SIN
2k +1 2k +1

for some positive n then the invariant domain
()’ contains a stable cycle of this system.

|7+ 1 (X)) | <m-sin

—n(l+sin2¢-sinp) < f'<—n(l—sin2¢-sin @).



3. Nonuniqueness of cycles HIR0
In the system (2k+1).

According to the Grobman-Hartmann theorem,
each nonlinear dynamical system can be linearized
In some neighborhood W of its hyperbolic point.

Consider In W 2-D planes corresponding to pairs
of the eigenvalues with positive real parts.

These planes are composed b?/ unwinding
trajectories of the dynamical system (2k+1).

Hypothesis 1: Outside of W different 2-D
planes generate different (??) cycles.
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Eigenvalues of one 9-D
symmetric dynamical system

x_1: [2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000]
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Projections of two different cycles of 9-D
symmetric system onto 3-D plane 4,45, 4;.
The second cycle 1s not contained In (D).

The stationary point is at the top of the picture.




Projections of two different cycles of 19/50
11-D symmetric system onto
two different 3-D planes

Ay Agy Ag lefty Ay, A, Ay, right.
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Projections of 3 cycles of 15-dimensional
system onto the plane 4,,, 4,

,.-'""/
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Same system and plane, 5 cycles.
Hypothesis 2: Continuum of cycles???




4. Model of 3-D gene network regulated
by a simple combination of negative
and positive feedbacks.

system (ffA):

dx,
dt dt dt

dx, dx,

f,(X,), T,(x) :]0,00) = (0,0), Smooth monotonically
decreasing f;(u) >0

for U —> 00,

ax, _
Aq(Xy) = - or more general unimodal
% function.

2

— fl(XS)_Xl T T fZ(Xl)—XZ; —=A3(X2)—X3
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Let As;(Yu) be the maximal value of Z = A,(Y)
and Z=(Yy) isthe inverse functionto y= f,(f,(2)).

Lemmal Let ¢@(f,(0))>A,(f,(0),
and either T.(1.(0)) > yy,
or T,(1,(0)) <ym, o(¥)<A;(Yy) for 0< V< VYu-

Then the system (ffA) has exactly one stationary
point Sy (X, Yo Zo) in the positive octant.

Let XA, YarZa be defined by Z, =A3(yA),

Ya<¥Yu <Yo: Za=@(Ya) Xa = (@ (VL))
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Linearization of system (1) at this point

So(Xg: Yo Z) is described by the matrix with
one negative eigenvalue.
Its other eigenvalues 4,, 4; are complex.

Consider the case
Re A, =Re 4;>0. (+)

Theorem “1”. If the condition (+) Is satisfied
then the system (ffA): has at least one
periodic trajectory.
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The proof Is based on existence of an invariant

domain of the system (ffA). This is the
parallelepiped  Q =[0, x,]x[y,, f,(0)]x[Z, As(yy)]

Actually, one can construct essentially smaller
Invariant domain (see below).

Now, existence of periodic trajectories follows
from the Brower fixed point theorem, as usual.

Recall that Z, = A;(Y4),

Ya<¥Yu <VYor Za=@(Ya) X = f(@(Y,A)).



Trajectories of the system (ffA)

f — O f 10- ~0.135x° A _17y
right: f:(2)= ,()=10-¢ =1

10 7y

left: fi(w)=f,(w)=

| y
: O 2 /"' :
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5. More complicated gene networks
models regulated by combinations of
positive and negative feedbacks.

system (fAA):

dx dx, dx
d—tlz fl(X3)—X, dt = A, (X)) = X;; d—tBZAS(XZ)_X3

f,(X_;):[0,00)—>(0,0), f.(uU)—>0 for U-—>00.

ajw

Aj(w) = — or other unimodal functions.
1+w




fl(XS) —

Stationary points of the system (fAA).

9 10X 10x
COAL(X) = L AL(X) = 2
1+ %] (%) 1+ x 5(%) 1+ %

28/50

X3 ::/\3(/\2()ﬁ));
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Stationary points | and Il of the system (fAA):

X3 : | | | | ' | | l I
'5 X; = A5 (A, (X)),

|
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 X 0.2
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Analogs of the theorems 1 and 2
about existence of a cycle and
existence of a stable cycle hold In
the neighborhoods of the
stationary points | and I11.

The stationary point V Is stable.

The stationary points Il and IV have
topological index +1.



Two variants of constructions of invariant

neighborhood of the stationary point | of
the system (fAA):
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Stationary points and cycles of the system (fAA):

fl(x3)=1+9X A= 10X . A, (%)= 2

1+ x

ul,u2,ud) (mp1,mp2,p3) (ull, ul2, ul3) (w2l u2,u3)
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Stationary points and cycles of the system
(fAA) (Same parameters, other trajectories).

(ul,u2,u3) (1p1,rp2,1p3) (ull,ul2 ul3) (vl 022, u23)
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5. Glass-Mackey-type systems.

dx Cdx, . dx
d—tl:Al(X3)_X1’ E_AZ(XI)_XZ’ d—t?):AB(XZ — X3,

A(w) =aw™ exp(—bw) Ricker function.

A(w) = a W Glass-Mackey function. (GM)

1+w

Aw)=rw-{(a~w)  Logistic function. (L)
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m-w; we[0,a/m],
ApoW)=12a-m-w; wela/m,(2a—q)/m], (A)
q; 2a—q)/m<w

Each of the systems listed here has exactly 7
stationary points in some invariant domain
If the parameters of the system are
sufficiently large.

The origin is also stationary point of each of
these systems, but it does not seem to be
SO Interesting.



37/50

Jofaof

0 N T

+)
fofofla) { 11 ! i1 14 ! +- - 1 \
i . +—% + {—4 ‘
f (;-f(u') : $ - 'lf | | -
Sla) §

( L L) LleLlpr W W - l‘l"r

Positions of the stationary points of the
Glass-Mackey system (GM).



Topological indices of the
stationary points

Topological indices of the points marked by “+”
equal +1, their Conley indices are : h(+) =S".
Topological indices of the points marked by *-”

equal -1, their Conley indices are : h(—) =S° .

The cycles of the Glass-Mackey type systems
do appear near the stationary points
with negative indices.

38
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For the stationary point marked by
green minus, we have proved analogs
of the theorems 1 and 2 about existence
of a (stable) cycle.

Numerical experiments show existence

of cycles near the 1-st, 3-d and the
7-th stationary points marked by blue
MmINuses.



40/50

Cycles C, (V), C,(VIl) of the system (A).

a =10, m=5, g=0.

| =
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Same cycles of the system (A). o =10, m=5, q=0.

\

\

C

7
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Same cycles In (A). |Similar pictures
were observed in the systems (GM), (L).



Cycles C,(V), C.(1),C, (1), C,(VIl) of the
system (GM). o=4.3,y=17.25. Projections onto
the plane Z=0.
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Our current tasks are connected with:
determination of conditions of regular
behavior of trajectories;
studies of integral manifolds and
nonuniqueness of the cycles,

their dependence on the variations of
the parameters, and

connections of these models with
discrete models of the Gene Networks.



APPENDIX: D.P.Furman, T.A.Bukharina A

The Gene Network Determining Development

of Drosophila Melanogaster Mechanoreceptors.
Comp. Biol. Chemistry 2009, v.33, pp. 231 - 234.
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More complicated model.

DEGRADATION @
OF PRONEURAL




We study dynamics A
of the above gene network model.

X=[AS-C],

y=[HAIRY],
%: F, (X, Y,Z,W) — X = 0,(D-Xx)+05(2) + o5 (W) _x L= SENS],
dt 1+G-y)QL+E-x) U:[SCRT],
dy , W:[CHN]
qr - Wy =Y concentrations.
dz :DA]’
E:SB(D-X)—Z, (DM) =[GRO],
du =[EMC]
PTIRRZICAR A parameters.
‘i—‘iV:sS(D.x)—w. Sigmoid functions

S.(D-x), i=345;, o;, ]=135
describe the positive feedbacks on the previous slide.



Graph of f=R(X)=F(xF,(5,(D-x),5,(D-X),S;(D-x)) "

and the stationary points of the system (DM).

Stationary points “I”” and “I11” are stable,
the point “I1” Is unstable. Ind(D)=ind(111)=-1; Ind(Il) = +1.
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Thank you for your attention
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B2

A trajectory convergent to the bifurcation cycle.

(ul,u2,ul), (rpl, rp2,rp3) . ] )
(in cooperation with A.G.Kleshchev)



B3

_ d 9 dz :
—=a, —x(1+7°); d_i/:1+x3_y; a:a3—2(1+y3) ’

a, =6.15, a, = 2.4

A trajectory and a bifurcation cycle.

(ul,u2,uld),(rpl,rp2,rp3)



A trajectory and a bifurcation cycle.




