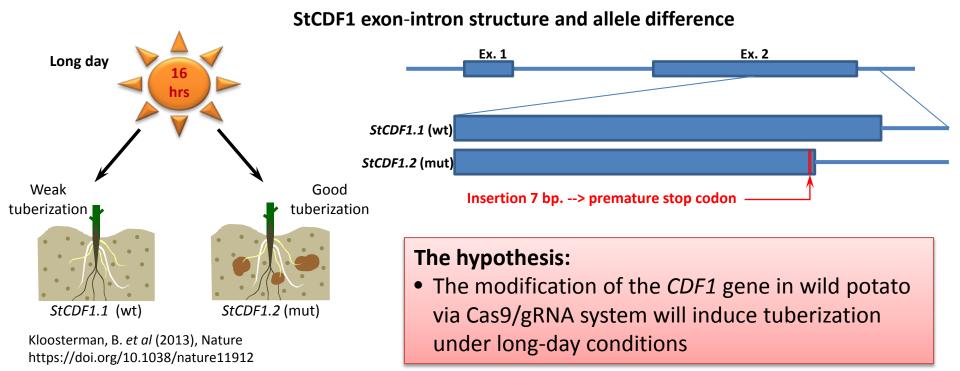
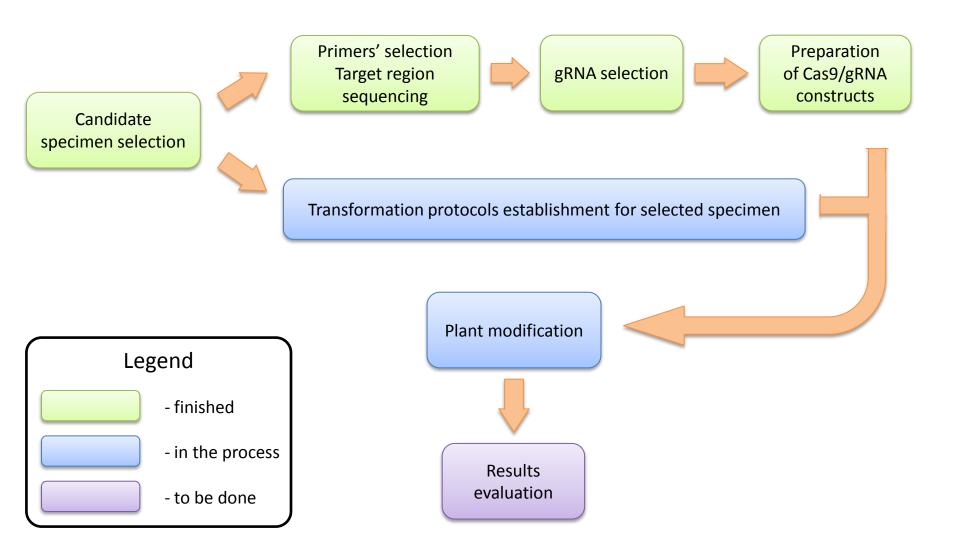
CDF1 gene editing strategy in potato wild species within de novo domestication concept


Fomin I.N.*1, Egorova A.A.^{1,2}, Koloshina K.A.¹, Gerasimova S.V.¹

¹ Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia


² Novosibirsk State University, Novosibirsk, Russia

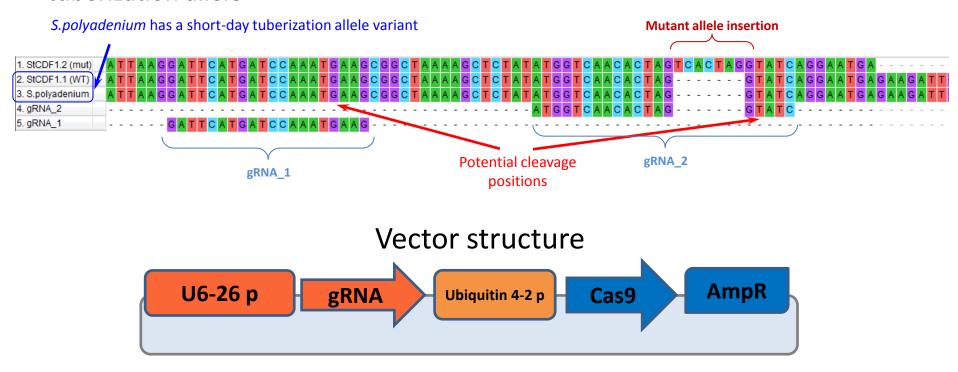
Wild potato species as trait donors

- During long selection process modern potato cultivars have lost their ability to resist various negative environmental factors, while many wild species have retained these traits.
- As part of the *de novo* domestication concept, we are looking for genes with modification potential supposed to accelerate the production of new trait donors for their introduction into breeding.
- One of such genes is *StCDF1*, which is involved in the regulation of tuberization.

Project pipeline

S.polyadenium was chosen for modification

- During last 3 years 19 specimen of wild potato from VIR collection were cultivated and phenotyped in long-day conditions (http://wildpetotadb.biores.cytogen.ru/ru)
- *S.polyadenium* having some good traits doesn't tuberize under long-day conditions. Therefore it was selected for modification of the *CDF1* gene.


№ in collection	Specimen	Tuberization*	Steroidal glycoalkaloids**	Virus infection (virus type)	Resistance to Colorado potato beetle	in vitro regeneration	Ploidy,
1	S. verrucosum	1		X		not established	2
2	S. demissum	0	-	Y	100%	established	6
3	S. stoloniferum	1	++	not found		not established	4
4	S.polyadenium	1	-	X	100%	established	2
5	S. pinnatisectum	2	-	X		not established	2
6	S. ehrenbergii	2	-	X		not established	2
12	S. stoloniferum	1	+	not found	65%	not established	4
16	S. jamesii	2	1	not found		not established	2
17	S. tarijence	2	-	Y		not established	2
19	S. cardiophyllum	2	-	X	100%	not established	2
24	S. pinnatisectum	2	-	X		established	2
27	S. dolichostigma	3	+++	not found	0%	established	2
28	S. commersonii	1	-	X, Y, S		not established	2
30	S. fendleri	2	-	X	15%	established	4
31	S. kurtzianum	2	++	not found			2
32	S. vernei	1	-	not found			2
33	S. chacoense	3	+++	not found	100%	established	2
34	S. chacoense	1	-	X, Y		established	2
36	S. demissum	0	-	X, Y		established	6

^{* -} Tuberization scale: 0 – no tubers; 1 - zero or few tubers during all three years; 2 – steady tuberization all three years; 3 – lots of tubers all three years

^{** -} Concentration of SGA: "-" - below 1mg/g of dry weight, "+" - between 1mg/g and 10mg/g, "++" - between 10mg/g and 20mg/g, "+++" - more then 20mg/g

Target site selection and gRNA design

Target sites were chosen in a region of natural mutation which leads to long-day tuberization allele

We expect a frameshift mutation leading to conversion from a short-day tuberization to a long-day tuberization allele

Acknowledgements: the study is funded by RFBR, project number 20-016-00217