

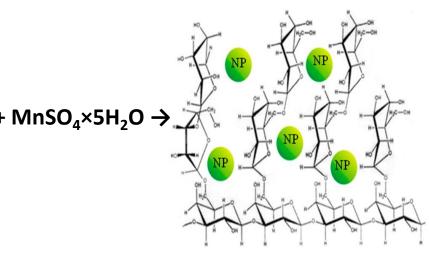
PlantGen2021

6th International scientific conference

Plant genetics, genomics,

bioinformatics, and biotechnology

June 14-18, 2021, Novosibirsk, Russia



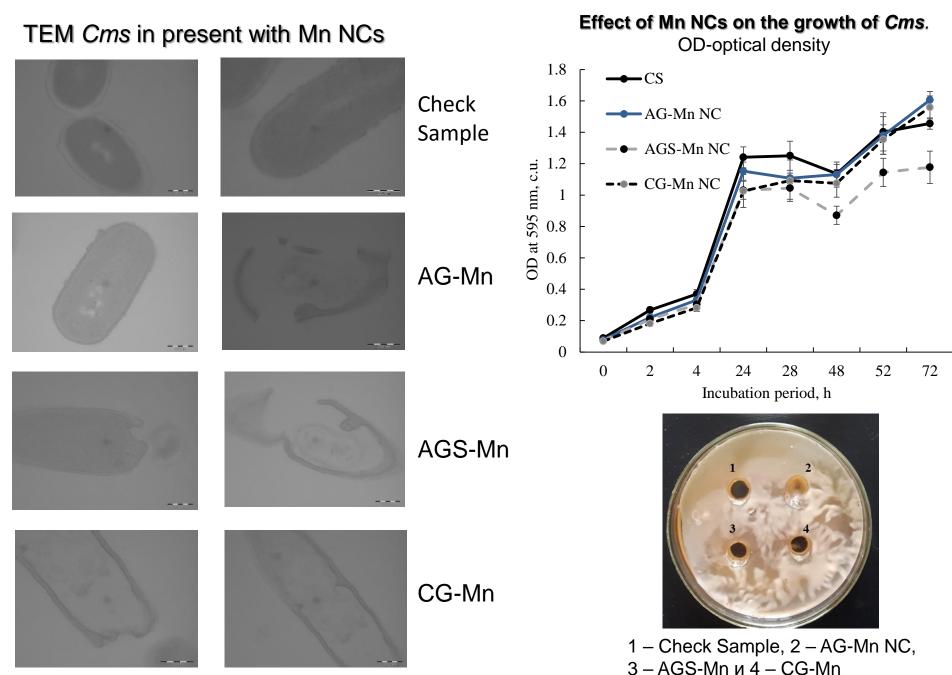
MANGANESE-CONTAINING BIONANOCOMPOSITES ON THE BASIS OF NATURAL POLYSACCHARIDES AS NOVEL UNIVERSAL MICRONUTRIENTS FOR SOLANUM TUBEROSUM L.

Nozhkina O.A.¹, Perfileva A.I.¹, Khutsishvili S.S.², Ganenko T.V.³

 ¹ Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk, Russia
 ² N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, AG + MnSO₄×5H₂O → Russia

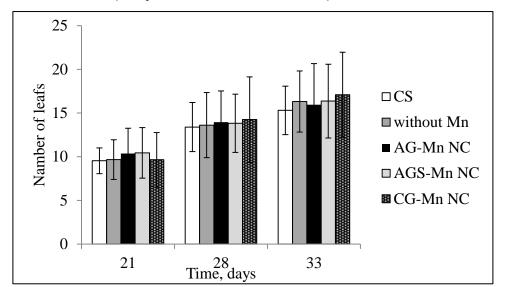
³ A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, Irkutsk, Russia

The aim - Investigation of the effect of manganese nanocomposites on the viability of phytoptogens and plants in order to develop drugs for the improvement of cultivated plants

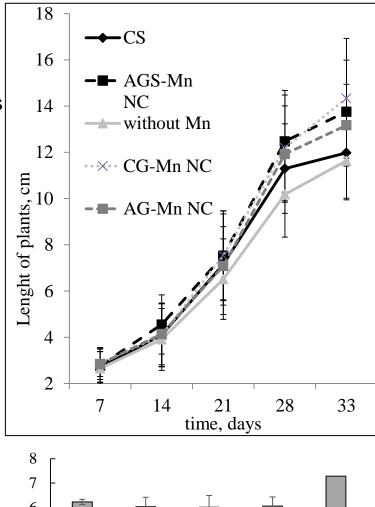

Materials. Magnesium nanocomposites (Mn NCs)

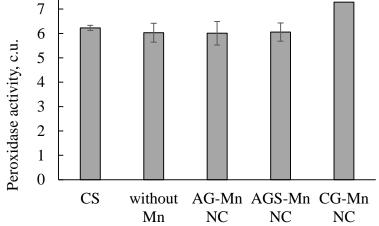
- 1. Nanocomposite (AG-Mn) based on arabinogalactan isolated from Siberian larch *Larix sibirica*. The content of Mn 5.2%.
- 2. Nanocomposite (AGS-Mn) based on sulfated arabinogalactan . The content of Mn 4.8%.
- 3. Nanocomposite based on carrageenan (CG-Mn) The content of Mn 20.2%.

NC - fine powders, brown or light brown in color. In the mass of the biopolymer, electron-dense round-shaped nanoparticles with an average size of 4-6 nm are formed, the nanoparticles do not form a group of clusters, they are dispersed in the mass of the polymer.


Objects:	Potato plants in vitro	Methods:
and a state	variety Lukyanovsky <u>Clavibacter sepedonicus</u> (Cms) bacterial that causes circular potato rot disease	 Synthesis of magnesium nanocomposites; Energy dispersive X-ray microanalysis of Mn NCs and seven elements including Mn in potato plant samples; Transmission electron microscopy of Mn NCs;
	Rhodococcus erythropolis;	 4. Electron paramagnetic resonance; 5. Cultivation of plants and microorganisms; 6. The optical density of the bacterial suspension; 7. Bacterial biofilm formation

Results. Effect of Mn NCs on Clavibacter sepedonicus bacteria


Results. Effect of Se NCs on potato plants


Effect of treatments by Se/AG and Se/ST NCs on the length (A, y – length of plants, cm) and number of leaves in potato plants *in vitro* (B, y – number of leafs). CS — control samples

The content of manganese (wt.%) in the organs of the plant Solanum tuberosum L. grown in the presence of manganesecontaining nanocomposites in the nutrient medium in comparison with the check sample

	roots	stems	Leaves
CS	0.17(3)	0.19(4)	0.20(13)
AG-Mn NC	0.28(10)	0.27(1)	0.24(20)
AGS-Mn NC	0.05(4)	0.16(11)	0.17(13)
CG-Mn NC	0.29(12)	0.38(13)	0.24(11)

Conclusions:

- <u>Mn NCs</u> have antibacterial effect against the phytopathogen Cms;
- <u>Mn NCs</u> do not affect the viability of potato plants in vitro;
- <u>Mn NCs</u> do not accumulate metal in the tissues of potato after processing plants with them;
- <u>*Mn NCs*</u> do not have a negative effect on the soil microflora;
- The most effective of all the studied substances is the AGS-Mn composite.

The project supported by RFBR 20-016-00152 A

Thank, you for your attention!

