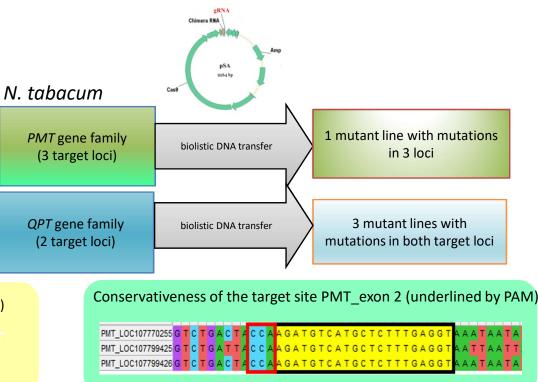
Phenotypic characteristics of tobacco plants harboring mutations in nicotine biosynthesis genes from *PMT* and *QPT* gene families

Kostina N.E.^{1*}, Lykhina A.V², Domrachev D.V.³, Spaselnikova A. V.¹, Tomilin M.A.^{1,2}, Romanova A.V.¹, Chamas S.⁴, Kumlehn J.⁴, Gerasimova S.V.^{1,2}

¹Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
 ²Novosibirsk State University, Novosibirsk, Russia
 ³Institute of Organic Chemistry, Novosibirsk, Russia
 ⁴Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany

Novosibirsk 2021

Nicotine accumulation is often a disadvantageous feature when using tobacco in biotechnological approaches. The decrease in nicotine levels can be achieved by knocking out respective key biosynthesis genes.


In the present study, Cas9/gRNA technology was used for targeted mutagenesis of the nicotine biosynthesis genes *PUTRESCINE N-METHYLTRANSFERASE (PMT)* and *QUINOLINATE PHOSPHORIBOSYLTRANSFERASE 2 (QPT2)*.

Two genetic constructs, a vector carrying cas9 and gRNA expression units without an antibiotic resistance gene, and a pBI121-based plasmid containing a kanamycin resistance gene and a GUS reporter gene, were delivered to tobacco leaf explants using biolistic DNA transfer. The design of the cas9/gRNA vector involved gRNAs simultaneously guiding the Cas9 nuclease to target motifs conserved across all three genes of the *PMT* gene family

(LOC107799426, LOC107799425, LOC107770255) and the *QPT2* gene family (LOC107820078 and LOC107829122).

Conservativeness of the target site QPT exon 5 (underlined by PAM)

LOC107820078 TACAACATTGTTATAGCTGACAGGTTG LOC107829122 TACAACATTGTTATAGCTGAGAGGGTTG

The aim of the study is to characterize obtained lines of mutant plants and identify mutations.

Methods and results

Specific pairs of PCR primers were designed to each target site using Perl primer Software. We use selected primer pairs for PCR and Sanger sequencing reaction.

Three clonally maintained T0 lines were obtained in which both *QPT2* genes exon 5 proved mutated.

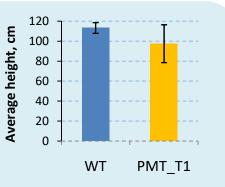
locus /clone population	QPT1 mut	QPT2 mut	QPT3 mut
LOC107820078	Biallelic mut,	Biallelic mut,	Biallelic mut,
	-9/?	-7/-5	+1/?
LOC107829122	Biallelic mut,	Homozygote,	Homozygote,
	-10/+1	+46/+46	-4/-4

 QPT2_LOC107829122_allele1 +1bp
 ACAACATTGTTATAGCTGGAGAGG

 QPT_LOC107829122_allele2 -10bp
 ACAACATTGTTA-----GGGTT-TTCTCAATTT1

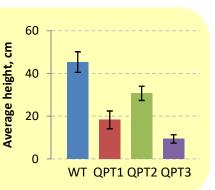
 QPT2_LOC107829122_ex 5
 WT

 ACAACATTGTTATAGCTG-AGAGGGTTGTTCTCCAATTT1

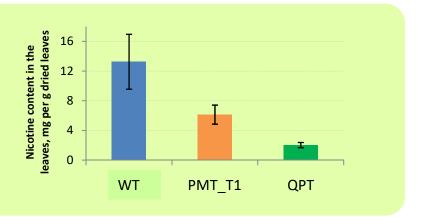

In the TO and T1 generations, plants carrying mutations in individual genes of the PMT family were identified.

clone populat \locus	ion LOC107770255	5 LOC107799425	LOC107799426
PMT(1) T0	mut –3 nt	mut –1 nt	mut –1 nt
	PMT4	PMT3	PMT2
Nº plant T1	LOC107770255	LOC107799425	LOC107799426
/locus	mut	mut	mut
1	– 3 nt	– 1 nt	– 1 nt
2	– 3 nt	– 1 nt	– 1 nt
3	– 3 nt	– 1 nt	– 1 nt
6	– 3 nt	– 1 nt	large deletion
7	large deletion	– 1 nt	– 1 nt
8	– 3 nt	– 1 nt	– 1 nt
9	large deletion	– 1 nt	– 1 nt
11	large deletion	– 1 nt	– 1 nt
13	– 3 nt	– 1 nt	– 1 nt
14	– 3 nt	– 1 nt	large deletion
15	– 3 nt	– 1 nt	– 1 nt
16	large deletion	– 1 nt	– 1 nt
17	– 3 nt	– 1 nt	large deletion
mut PMT_LOC426	AGTCTGATTAC	С А А G А - G T C A T G C T C 1	TTGAGGTAATTAAT
mut PMT_LOC425		С А А G А - G Т С А Т G С Т С 1	
mut PMT_LOC255		CAAGACATGCTC1	
SR1	AGTCTGACTAC	CAAGATGTCATGCTCI	<u>T T G A G</u> G T A A A T A A T

We estimated 10 morphological parameters of mutant plants and carried out biochemical analysis for nicotine content in the leaves.


PMT mutant plants

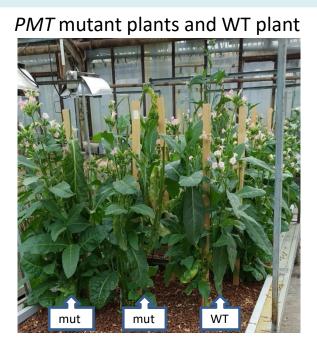
The initial assessment of viability and morphology did not reveal any differences between T1 mutant plants and their wild-type counterparts.

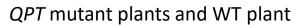


QPT mutant plants

QPT2 (for each line 1,2,3) lossof-function plants exhibited severe phenotypic abnormalities such as inhibited growth, longostyly, a decrease in pollen fertility, and the absence of viable seeds.

The nicotine content in the leaves of *PMT* mutants (n=13 plants) was reduced to approximately 50% as compared to the controls. The nicotine content in the leaves of *QPT2* mutants (sum of lines 1,2,3) was 6.5 times lower than the that of wild-type leaves.




4

Conclusion:

A decrease of the nicotine content in *PMT* mutant plants reveals that knockout of this gene is can be used to reduce tobacco toxicity. The knockout of *QPT2* is inappropriate to use for obtaining low-nicotine tobacco varieties.

The severe abnormalities associated with the knockout of *QPT2* suggests that these genes' function is essential also for other processes than nicotine production in *N. tabacum*.

The work is supported by the budget project – 0259-2021-0012