

TARGETED KNOCKOUT OF THE NUD GENE IN SIBERIAN BARLEY

Korotkova A.M.^{1*}, Kolosovskaya E.V.², Gerasimova S.V.^{1,2}, Hertig C.³, Otto I.³, Kumlehn J.³, Khlestkina E.K.⁴

¹ Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia

²Novosibirsk State University, Novosibirsk, Russia

³Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany

⁴N.I. Vavilov All-Russian Institute of Plant Genetic Resources, St. Petersburg, Russia

*e-mail: korotkova@bionet.nsc.ru

PURPOSE OF THE STUDY: TO OBTAIN A HULL PHENOTYPE BASED ON LOCAL ELITE BARLEY CULTIVARS.

The NUDUM (NUD) gene encodes a transcription factor involved in the formation of a lipidic layer at the grain surface of hulled barley. If the NUD gene function is lost, lemma and palea do no longer adhere to the grain's pericarp, which entails the non-adherent hull (i.e. naked) phenotype (nud).

MATERIALS AND RESULTS

Reading frame shift

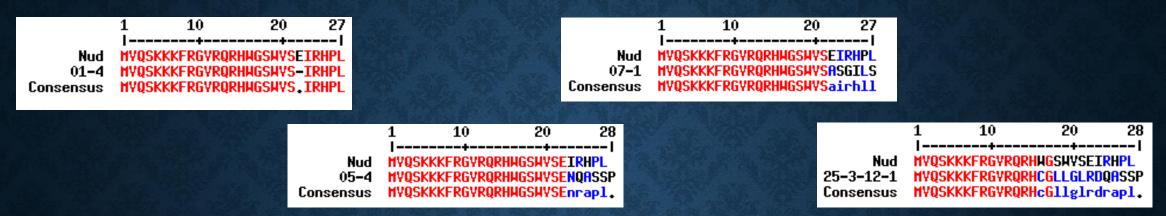
Loss-of-function mutations first were generated in protoplasts on cultivars Aley and Golden promise.

As a result of the transformation, a large number of mutations were obtained.

We allocated 5 mutant lines for the Nud gene, all lines have naked grain phenotype:

Š	Mutati	Mutation detection in protoplasts with the given mutation frequencies being normalized to transformation efficiency									
	Guide-RNA	Total number of reads	Transformation efficiency	Mutation type*	Number of reads with mutation	Mutation frequency, %					
	Nud-45	6758	0.66	-G (-1)	691	15.5					
				-GG (-2)	210	4.7					
				-GGGCTCCTG (-9)	81	1.8					
	Nud-50	7821	0.46	-CTCGGA (-6)	158	4.4					
à				-CTCGG (-5)	112	3.1					

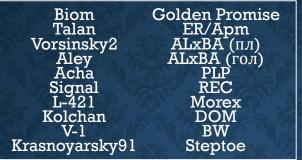
	261	270	280	290	300	310	320
Nud	•	-	GTCAGGCAGC	-	-	-	
05-4_1	GAAGT	TTCGCGGC	GTCAGGCAGC	GCCACTGGGGC	TCCTGGGTCT	CCGAGGATCA	AGGCATC
05-4_2	GAAGT	TTCGCGGC	GTCAGGCAGC	GCCACTGGGGC	TCCTGGGTCT	CCGAGGATC	AGGCATC
05-4_4	GAAGT	TTCGCGGC	GTCAGGCAGC	GCCACTGGGGC	TCCTGGGTCT	CCGAGAATC	AGGCATC
05-4_3	GAAGT	TTCGCGGC	GTCAGGCAGC(GCCACTGGGGC	CTCCTGGGTCT	CCGAGAATCA	AGGCATC
Consensus	GAAGT	TTCGCGGC	GTCAGGCAGC	GCCACTGGGGC	CTCCTGGGTCT	CCGAG . ATCA	AGGCATC


	1 10	20	30	40	50	60
	+			+	+	
Nud	ATGGTACAGT	CCAAGAAGAAGT	TTCGCGGCGTC	AGGCAGCGCCA	CTG-GGGCTC	CTGGGTC
25-3-10-5	ATGGTACAGT	CCAAGAAGAAGT	TTCGCGGCGTC	AGGCAGCGCCA	CTGTGGGCTC	CTGGGTC
25-3-10-7	ATGGTACAGT	CCAAGAAGAAGT	TTCGCGGCGTC	AGGCAGCGCCA	CTGTGGGCTC	CTGGGTC
25-3-10-13	ATGGTACAGT	CCAAGAAGAAGT	TTCGCGGCGTC	AGGCAGCGCCA	CTGTGGGCTC	CTGGGTC
25-3-10-8	ATGGTACAGT	CCAAGAAGAAGT	TTCGCGGCGTC	AGGCAGCGCCA	CTGTGGGCTC	CTGGGTC
Consensus	ATGGTACAGT	CCAAGAAGAAGT	TTCGCGGCGTC	AGGCAGCGCCA	CTGLGGGCTC	CTGGGTC

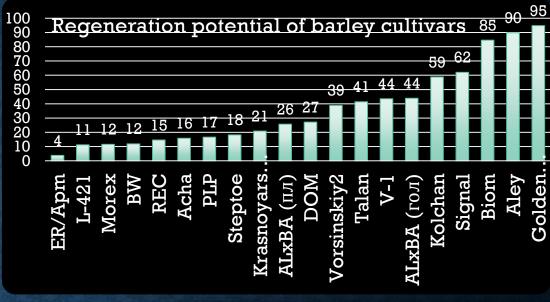
Changing the amino acid composition of the protein

	131	140	150	160	170	180
Nud	•	-	-	CACTGGGGCT	-	-
01-4_1	AGTTT	CGCGGCGT	CAGGCAGCGC	CACTGGGGCT	CCTGGGTCTC	CATCAGG
01-4_2	AGTTT	CGCGGCGT	CAGGCAGCGC	CACTGGGGCT	CCTGGGTCTC	CATCAGG
01-4_3	AGTTT	CGCGGCGT	CAGGCAGCGC	CACTGGGGCT	CCTGGGTCTC	CATCAGG
01-4_4	AGTTT	CGCGGCGT	CAGGCAGCGC	CACTGGGGCT	CCTGGGTCTC	CATCAGG
Consensus	AGTTT	CGCGGCGT	CAGGCAGCGC	CACTGGGGCT	CCTGGGTCTC	CATCAGG

Disruption Nud amino acid sequences of mutants


It was demonstrated that the naked grain phenotype of these mutant lines is not accompanied by any modifications of agronomically relevant properties.

Statistical analysis (Mann-Whitney U test) of measured plant parameters and yield (mutant and control line comparison):


Parameter of the sheaf analysis	Plant height	Spike density	Awns length	Total tillering	Producti ve tillering	Spikes length	Main spikes length	Number of grains per plant	Number of grains from the main spike	Weight of 1000 grains	Weight of grains per plant	The mass of grains from the main spike
u _{emp} value for 01	18,5	40,5	35	42	46,5	11↓	27,5	50	47,5	19	38	22
u _{emp} value for 05	41	44,5	39,5	46,5	49,5	12↓	45	49	26,5	28	49	40,5
u _{emp} value for 07	34	36,5	43,5	25,5	29,5	23,5	44	47,5	15,5个	11,5↓	46	41

Interpretation: The difference is significant Zone of uncertainty The difference is not significant

A panel of barley cultivars (20 including the control one – Golden promise) was tested for the *in vitro* regeneration potential of immature embryo explants:

The cultivars Aley, Biom and Signal performed best in the regeneration screen. Upon establishment of a protoplast transfection protocol, it was shown that mutations can be triggered in the *NUD* gene of cv. Aley, thereby confirming that the used *cas9*/gRNA vectors work effectively in this genetic background as well.

Attempts to achieve site-directed mutagenesis at the whole-plant level using *Agrobacterium*-mediated and ballistic DNA transfer to embryo explants of cultivars Aley and Biom are in progress.

References

- 1. Gerasimova, S.V., Hertig, C., Korotkova, A.M. *et al.* Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the *NUD* gene. *BMC Plant Biol* **20,** 255 (2020).
- 2. Gerasimova SV, Korotkova AM, Hertig C, Hiekel S, Hoffie R, Budhagatapalli N, et al. Targeted genome modification in protoplasts of a highly regenerable Siberian barley cultivar using RNA-guided Cas9 endonuclease. Vavilov J Genet Breed. 2019;22:1033–9.

Acknowledgement: The study is supported by the Russian Science Foundation (project No 21-66-00012) and by the ICG Kurchatov Genomics Center (075-15-2019-1662).

