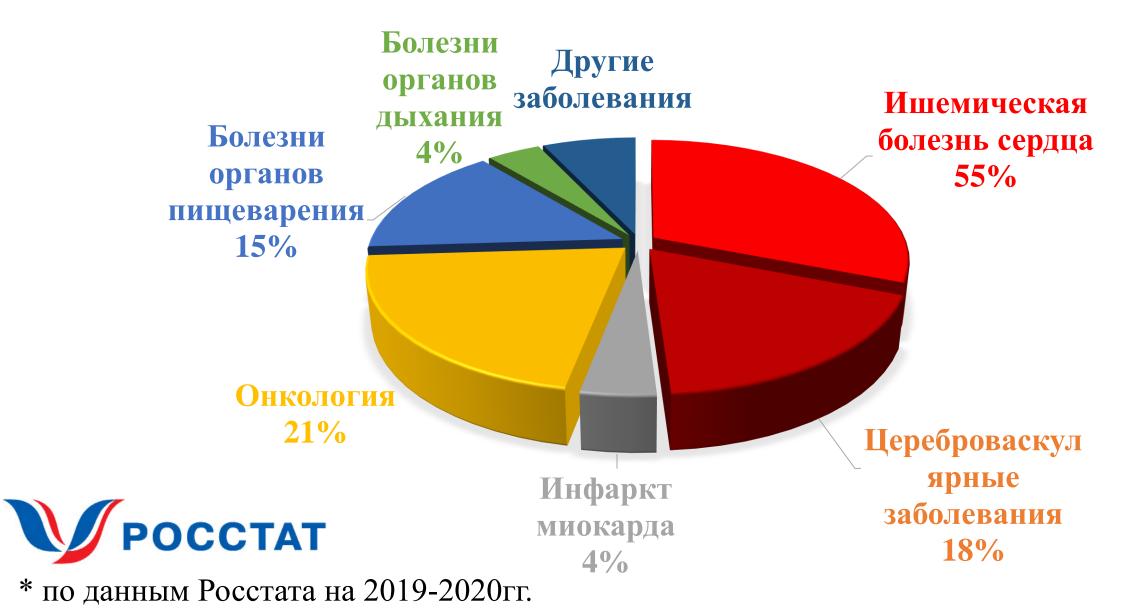


Adyghe State University


Адыгейский государственный университет

Полиморфизмы генов провоспалительных цитокинов и дисбаланс субпопуляций NK-клеток в патогенезе ишемической болезни сердца

Шумилов Д.С.*, Тугуз А.Р., Татаркова Е.А.

Shumilovd@internet.ru

Смертность в РФ от заболеваний

Актуальность. Экспериментальные исследования патогенетических механизмов развития и течения атеросклероза с участием медиаторов иммунной системы и субпопуляций натуральных киллерных клеток (NK) направлены на выявление новых маркеров донозологической диагностики атеросклероза, прогноза течения и мишеней для таргетной терапии.

Цель – исследовать роль медиаторов воспаления IL-17A, IL-1β, TNF-α и IL-4, соотношение CD56hiCD16— / CD56loCD16+ субпопуляций NK в патогенезе коронарного атеросклероза с исходом в ишемическую болезнь сердца (ИБС).

Методы и алгоритмы: Выделение, культивирование мононуклеарных клеток периферической крови (МНК), постановка in vitro спонтанной и индуцированной продукции медиаторов иммунной системы, иммуноферментный анализ, цитотоксический тест, полимеразная цепная реакция, проточная цитометрия. Всего обследовано 130 жителей г. Майкопа, в том числе больные с ИБС (n = 62) и контрольная группа (n = 68) – здоровые доноры.

Биологичес кие	Гоунил	Концентрации, pg/ml			t1	t^2	t^3	
среды	Группы	$M \pm m, pg/ml$	$M \pm m, pg/ml$	$M \pm m, pg/ml$	l l1	l ²		
<i>IL-17A</i>		GG	G A	AA				
Сыворотка крови	больные‡	0.00	0.91 ± 0.91	0.00	a, b, c -	a -	d, e -	
	доноры"	0.00	15.35 ± 8.76	-	p>0.05	p>0.05	p>0.05	
PBMC	больные [‡]	16.38 ± 4.1	86.63 ± 1.46	101 ± 1	a, b, c -	a -	d, e -	
	доноры"	0.00	$7,95 \pm 5,24$	-	p < 0.05*	p < 0.05*	p < 0.05*	
Коэффициент корреляции для AA генотипа: $r = 0.8$ -0.9, $p = 0.01$ -0.05								
$IL-1\beta$		TT	TC	CC				
Сыворотка крови	больные [‡]	0.74 ± 0.04	1.93 ± 0.71	0.02 ± 0.02	a, b, c -	a, b, c -	d, e, f -	
Blood serum	цоноры'''	0.06 ± 0.07	0.09 ± 0.07	0.00	p>0.05	p>0.05	p>0.05	
I PRIMIC F	больные [‡]	27.15 ± 0.15	116.5 ± 13.15	59.18 ± 12.94	a, b, c -	a, b, c -	d, e, f -	
	цоноры'''	2.61 ± 1.01	19.88 ± 6.23	0.41 ± 0.34	p < 0.05*	p < 0.05*	p < 0.05*	
Коэффициент корреляции для TC генотипа: r=0.86-0.9, p=0.01-0.05								
TNF-α		GG	GA	AA				
Сыворотка крови	больные [‡]	0.15 ± 0.1	1.62 ± 0.63	0.00 ± 0.00	a, b, c -	a, b, c -	d, e, f -	
Blood serum	цоноры'''	1.68 ± 2.38	1.37 ± 1.06	0.00 ± 0.00	p>0.05	p>0.05	p>0.05	
I PRMC' F	5ольные [‡]	436.86 ± 82.2	194.13 ± 1.24	0.00 ± 0.00	a, b, c -	a, b, c -	d, e, f -	
	цоноры'''	8.12 ± 5.51	2.35 ± 1.92	6.87 ± 5.61	p < 0.05*	p < 0.05*	p < 0.01*	
Коэффициент корреляции для GG генотипа: r=0.88-0.9, p=0.01-0.05								

Примечания: ‡ - n=20; $^{\text{\tiny M}}$ - n=32; M − средняя арифметическая; m − стандартная ошибка среднего; * p≤0,05; t - критерий Стьюдента; t1 − сравнение генотипов больных: (IL-17A иTNF- α) a1− GG/GA, b2 − GG/AA, c3 − GA/AA, (IL-1 β) a1− TT/TC, b2 − TT/CC, c3 − TA/CC; t2 − сравнение генотипов доноров: a1(IL-1 β) − TT/TA, b2 − TT/AA, c3 − TA/AA; r − интервал коэффициента корреляции между генотипами AA (IL-17A), TC (IL-1 β), GG (TNF- α) и продукцией PBMC, PBMC+ Φ ГА

Соотношение субпопуляций NK-клеток у больных ИБС и здоровых доноров

Субпопуляции NK	ИБС (n=7)	Контроль (n=8)	
CD56 ⁺ CD16 ⁺ M ±m	3.30±0.86	5.04±1.41	t=1.05, p=0.3128 t _{крит} =2.16 при f=13
CD56 ⁺ CD16 ⁻ M±m	3.36±0.38	1.19±0.40	t=3.93, p=0.0019 t _{крит} =2.16 при f=13
CD56 CD16 + M±m	0.53±0.35	0.33±0.17	t=0.51, p=0.6165 t _{крит} =2.16 при f=13

Примечание: М – средняя арифметическая; m – стандартная ошибка среднего; t – критерий Стьюдента; p – уровень значимости; f – число степеней свободы

Заключение: Иммуновоспалительные механизмы развития ИБС ассоциированы с единичными нуклеотидными заменами в промоторных регионах генов медиаторов острого и хронического воспаления (IL-17A, IL-1β, TNF-α). Оверэкспрессия IL-17A, IL-1β и TNF-α в сочетании со сниженной NКактивностью МНК, преобладанием CD56hiCD16— характеризуется повышением амплитуды провоспалительного компонента, запускающего и длительно поддерживающего патофизиологические процессы развития атеросклероза.

Список литературы:

- 1. Дутова С.В., Саранчина Ю.В., Карпова М.Р., Килина О.Ю., Польша Н.Г., Кулакова Т.С., Ханарин Н.В., Цитокины и атеросклероз новые направления исследований. Бюл. сиб. медицины. 2018;17(4):199-207.
- 2. 2. Backteman K., Ernerudh J., Jonasson L. Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clinical Experimental Immunol. 2014;175(1):104-112.