Tomsk Research Institute of Medical Genetics Siberian Brunch of Russian Academy for Medical Science

Genetics of tuberculosis susceptibility in Siberian populations

Rudko Alexey

aleksey.rudko@medgenetics.ru

<u>Tuberculosis is a world-wide</u> <u>health problem</u>

- From 1850 y. to 1950 y. there are 2 billion peoples have died from tuberculosis.
- Now every year is about 2 million deaths are becoming from this infection.
- 10% of TB cases are occured on the base of HIV infection.

Hippocratic (460-377 yy.b.c.)

«Some peoples are more resistance to diseases, others absolutely cannot withstand to. As children with epilepsy are born from epileptic parents, simply the children predisposing to tuberculosis are born from consumptive».

Francis Galton (1822-1911)

«Not only capacities and talent are inheriting, but also another psychic and biologic properties such as tendency to drunkenness, vagrancy, <u>tuberculosis</u>, cardiac diseases and longevity, as well as morale and religion». (1870).

Solomon Levit

(1894 - 1938)

Levit S. organized spacious medical-genetics research of different diseases in Soviet Russia used of different approaches, including studying of twines. Studying of inherited factors influence to development of tuberculosis he performed in collaboration with Shtefko V.G. (Central Research Institute of Tuberculosis).

John .B.S. Haldane (1892-1964)

J. Haldane proposed that the majority of the genetic diversity found within human populations has been selected for and maintained by infectious diseases. It has been claimed that *Mycobacterium tuberculosis* was responsible for one-fifth of all deaths occurring in western Europe after the industrial revolution. Therefore it is likely that *M. tuberculosis* has had a major effect on the evolution of the human genome (1949).

Tuberculosis is a multifactorial disease

- Social and environmental factors: poverty, bed nutrition, over-population, migrations.
- Micobacterium: potogenity and drug resistance.
- Host condition: adequate immune defense dependent on human genome.
- HIV-infection: is about 8-10% of tuberculosis is associated with AIDS.

Proof of genetic components influence

77 have died from a heavy tuberculosis

174 was not ill

Family-based study of tuberculosis

Accumulation of TB at separetad relativesStudying of twines

Country	Concordance		
	MZ (%)	DZ(%)	
Germany	65	25	
USA	62	18	
Grate Britain	32	14	

Bellamy R., 2001

Evidence of involvement of inherited factors to TB development at man

Clinicoepidemiologyc studying

22 countries - 80% of all tuberculosis patients in the world

Burden ranking

- 1. India
- 2. China
- 3. Indonesia
- 4. Nigeria
- 5. South Africa
- 6. Bangladesh
- 7. Pakistan
- 8. Ethiopia
- 9. Philippines
- 10. Kenya
- 11. Congo
- 12. Russian Federation
- 13. Viet Nam
- 14. Tanzania
- 15. Uganda
- 16. Brazil
- 17. Afghanistan
- 18. Thailand
- **19.** Mozambique
- 20. Zimbabwe
- 21. Myanmar
- 22. Cambodia

TB-morbidity in Russia

region	Rate of new TB cases			
	2000 y.	2001 y.		
Russion Fedration	90,7	88,2		
Siberian Federal County	126,4	127,8		
Altai Republic	92,1	96,2		
Altai region	137,8	140,1		
Buryat Republic	140,9	132,1		
Tiva Republic	322,9	348,3		
Khakas Republic	116,7	123,1		
Krasnoyarsk region	100,2	102,7		
Irkutsk region	131,8	143,0		
Kemerovo region	149,0	130,8		
Novosibirsk region	138,6	137,4		
Omsk region	108,9	110,6		

Different approaches for identifying genes of predisposition to tuberculosis

- Using of animal models.
- Studying of individuals with high susceptibility to nonpathogenic mycobacteries.
- Case-control study. Search of associations between polymorphic variants of candidate genes and tuberculosis.
- Genome-wide linkage studies.

Genetic loci involved in susceptibility to tuberculosis at man

Локус	Описание
HLA-DRB1	HLA, класс II
SLC11A1 (NRAMP1)	Транспорт двухвалентных катионов
INFG	Цитокин интерферон-гамма
VDR	Рецептор витамина D
SP110	Фактор транскрипции
IL8	Цитокин интерлейкин-8
UBE3A	Убиквитин лигаза
MAL/TIRAP	Адаптор TLR сигнального пути
P2RX7	Рецептор АТР
IL10	Цитокин интерлейкин-10
DC-SIGN	Рецептор С-типа лектина дендритных клеток
SP-A	Белок сурфактанта
CCL2	Хемокин белок-1 хемоаттрактант моноцитов
IL12RB1	Рецептор цепи цитокина интерлейкина-12
INFGR1	Рецептор цепи цитокина интерферона-гамма
CR1	Рецептор комплемента, CD35
TLR2	Toll-подобный рецептор-2
MBL2	Маннозо-связывающий лектин

*PIDs – Primery immunodeficites

NRAMP1 (SLC11A1) gene.

- 1974 y. variable growth of *Leishmania donovani* in inbred strains of mice, terminated by *Lsh* locus.
- 1982 y. susceptibility of mice to *Leishmania donovani, Salmonella typhimurium, Mycobacterium bovis* controlled by 1 locus (*Bcg/Lsh/Ity*), on the 1-st chromosome.
- 1992 y. the *Nramp1* gene (Natural resistance associated macrophage protein 1) was mapped in mice by positioning cloning in locus *Bcg/Lsh/Ity*.
- 1994 y. human homologous gene of *Nramp1* was mapped on 2q35. It was named *NRAMP1 (SLC11A1)*.
- 1996 y. the mutation at mice *Nramp1* gene was detected (G169D), which cause the susceptibility of mice to *Leishmania donovani, Salmonella typhimurium, Mycobacterium bovis*.

NRAMP1 protein of mice

Localization at man - 2q35; MIM - 600266

<u>Mechanism of Anti-tuberculosis activity</u> <u>of NRAMP1 protein</u>

The NRAMP1 protein is believed to be a transmembrane iron transporter, which is localized to the late endosomal compartment of resting macrophages and is recruited to the phagosome on phagocytosis.

NRAMP1 gene polymorphism

- *NRAMP1* is one of the most actively studied gene at human.
- There are 58 knowing SNPs of human *NRAMP1* in databases.
- Is about 10 SNPs of *NRAMP1* are most studied.
- There are more than 15 associations with tuberculosis were detected in different world populations.
- Discrepancies of results: from mayor gene effect (Canadian aborigines) to absence of associations (Dania, Brazil, Morocco).

Toll-like receptors genes

- Stimulation of TLRs lead to activation of the nuclear factor of transcription NF-kB including a transcription of genes cytokines (*TNFa*, *IL1B*, *IFN* γ etc.), hemocines and molecules of adhesion which are important at an inflammation.
- *TLR2* (4q32), MIM 603028
- TLR4 (9q32-q33), MIM 603030
- Polymorthic variants of *TLR2* gene (P681H, Arg753Glu, (GT)n et al.) are associated with decriase of immunity, *M. tuberculosis* and other intracellular infections at man.

Monogenic forms of nonpathogenic micobacterial infections

Recently, some individuals with severe infections due to otherwise weakly pathogenic mycobacteria (nontuberculous mycobacteria or *Mycobacterium BCG*) or *Salmonella* species have been shown to be unable to produce or respond to interferon- γ . This inability results from deleterious mutations in any one of five different genes involved in the type 1 cytokine cascade: *IL12B*, *IL12RB1*, *IFNGR1*, *IFNGR2* or *STAT1*.

First description of such infections was in 1951 y.

Mutations in genes associated with type 1 cytokines and receptors and their phenotypes

Gene	Extent of defect	Pattern of inheritance	N of cases reported	Number of deaths <11	Main inefctions diagnosed (n)
IL12B	Complete	AR	16	7 (44%)	M. bovis BCG (13) Salmonella (5)
IL12RB1	Complete	AR	21	4 (19%)	M. bovis BCG (11) M avium (6) Salmonella (8)
	Partial		1		-
IFNGR1	Complete	AR	22	10 (45%)	M avium (8) M. bovis BCG (11)
	Partial	AR	2	-	M. bovis BCG (1) S. enteritidis (1) Clinical tub. (1)
	Partial	AD	32	2 (7%)	M avium (8) M. bovis BCG (11)
IFNGR2	Complete	AR	2	-	M. avium (1) M. fortuitum (1) M. abscessus (1) M. bovis BCG? (1)
	Partial	AR	1	-	M. bovis BCG
STATI	Partial	AD	3	-	M. bovis BCG (1) M avium (1)

• The rate of disseminate BCG infections in France is 0,59 per 1 million of births.

(Altare et al., 1998).

• Clinical tuberculosis (*M. tuberculosis*) has been diagnosed in at least four individuals with deficiencies in the type 1 cytokine cascade.

Why not more?

- This may be a result of lack of exposure, as many of the individuals studied come from countries where *M. tuberculosis* is no longer endemic.

- Individuals with such defects that are affected with tuberculosis die before a genetic diagnosis is made, or, alternatively, that such genetic defects are not considered once individuals present with tuberculosis.

- It is possible that resistance to *M. tuberculosis* in humans is less dependent on IL-12 and IFN- γ immunity than is resistance to *M. bovis* BCG or non-tuberculous mycobacteria.

(Ottenhoff T. et al., 2002).

U The primery disseminate form of TB at children can be result of the mutations of genes of the type 1 cytokine cascade (*IL12B*, *IL12RB1*, *IFNGR1*, *IFNGR2* or *STAT1*).

Results of genome-wide screens at tuberculosis

population	material	Linked loci	LOD	articles
Gambia	67 families – 73 sibs pairs with TB, 16 families with TB - 19 sibs pairs (Kuazulu-Natal)	Xq26 15q11-13	1,84 2,00	Bellamy R. et al, 2000
Brasilia	16 families with TB – 178 individuals	10q26.13 11q12.3 20p12.1	1,31 1,85 1,78	Miller E.N. et al, 2004
Morocco	96 families - 227 siblings	1q22 3q27-q28 8q12-q13	2,00 1,93 3,38	El Baghdadi J. et al, 2006

Candidate loci and genes of susceptibility to tuberculosis

Results of studying of genetic predisposition to tuberculosis in Siberian populations

Description of studied groups

Studied genes

gene	Polymorphic vaiant	Localization in gene	Enzyme
	274C/T	exon 3	Mnl I
	469+14G/C	intron 4	Apa I
	1465-85G/A	inton 13	Bsel I
	D543N	exon 15	<i>Bme18</i> I
	F/f	exon 2	Fok I
	B/b	intron 8	Bsm I
IL12B	1188A/C	3'-UTR	Taq I
IL1B	(+3953)A1/A2	exon 5	Taq I
ILIRN	VNTR	intron 2	-

All polymorphisms are SNPs, with the exception of VNTR of *IL1RN*

Allelic frequencies of studied polymorphisms at TB patients and health tuvinians

Allelic frequencies of studied polymorphisms at TB patients and health Russians

Results of TDT in Russian families with TB

	NRAMP1 469+14G/C	NRAMP1 1465- 85G/A	NRAMP1 274 C/T	IL12B 1188A/C	VDR B/b	VDR F/f	IL1B +3953A1/A2	IL1RN A1/not A1
TDT	1,000	0,150	0,060	8,070	2,000	0,000	0,050	0.600
Р	0.317	0,700	0.808	0,005	0.151	1,000	0.818	0.439

Associations of studied polymorphisms with quantitative and qualitative traits

Polymorphisms	Tuvinians	Russians
NRAMP1*274C/T	level of haemoglobin and leucocytes	Destruction of lung, size of TB lesions
NRAMP1*469+14G/C	Level of eosinophiles	
NRAMP1*1465-85G/A		
NRAMP1*D543N	Level of neutrophils and monocytes	
IL1B*3953A1/A2		
IL1RN*VNTR	Erythrocytes sedimentation rate, level of neutrophils and lymphocytes; Destruction of lung, size of infiltration	
IL12B*1188A/C		
VDR*F/f		Erythrocytes sedimentation rate, Level of immature leucocytes
VDR*B/b	Level of immature leucocytes Destruction of lung, size of cavities	Level of neutrophils; size of TB lesions

Conclusions

- The structure of genetic predisposition to tuberculosis in Tuvinians and Russians is not the same. Possibly because they have different models of disease inheriting:
- The model of polygenic inheritance (including *NRAMP1*, *IL12B*, *IL1B*, *IL1RN* genes) is more representative for Russians, because of the long *M. tuberculosis* exposition history.
- For Tuvinians the major-gene model is more characteristic, then disease development is caused by one or more genes with relatively strong effect. This effect is reinforced by *NRAMP1*, *VDR*, *IL12B*, *IL1B*, *IL1RN* polymorphic variants, which frequency are more higher in Tuvinians then in other populations.
- Studied genes are important factors in forming of clinical polymorphism of TB in studied populations.

Our research plans

- Collection and studying of new groups ot TB-patients from other Siberian populations (Jakuts, Burjats et al.).
- Expansion of a spectrum of studied genetic markers in these populations.
- Skrining and studying of mutations of genes involved in Th-1 type of immunity (monogenic forms of TB) at children with active TB.
- Experimental research work studying of genes expression in monocites at different antigenic stimulation
- Development of the russian and international collaboration.

Our research collaborations

- Ministry of Health of Tiva Republic
- Siberian State Medical University
- Yakutsk Research Center
- Koch-Mechnikov Forum (Germany-Russia)
- Wellcome Trust Center of Human Genetics (Oxford, UK)
- Novosibirsk Research Institute of Tuberculosis

Application of new knowledge

- Understanding of infectious diseases pathogenesis and host defense from infectious agents.
- Prediction of disease development risk.
- Design of new and more effective vaccines.
- Design of new drugs.
- Genomic medicine and gene therapy.

Thank you for your attention!