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Types of protein-protein interactions and their
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Physico-chemical properties of complexes and
Interfaces, binding hot spots.

Experimental methods to identify interactions.
Computational methods to predict PPIs.
Evolution of protein interactions.

Regulation of protein-protein binding.



Proteins function while interacting with other
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Proteins provide specific binding interfaces
to interact with ligands.
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Binding interfaces share common
properties: conservation of certain amino
acids, hot spots, geometry.

\
Ribosome

@ Protein

. RNA
. Microtubule
2

Intermediate
fllament

% Actin
filament




Different types of protein-protein
Interactions.

« Permanent/obligatory — subunits might not be stable in
Isolation and transient — subunits might fold independently.

« External are between different chains:; internal are within
the same chain.

 Homo- and hetero-oligomers depending on the similarity
between interacting subunits.



Obligate PPI Non-obligate PPI
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Role of homooligomers in a cell

- Mediate and regulate gene
expression, activity of enzymes,
lon channels, receptors and cell-
cell adhesion processes.

Tetramer
10% ., Higher order

Trimer
* Provide sites for allosteric il
regulation, new binding sites at
Interfaces to increase specificity.

0 .
homooligomer

* Provides stability, protection
against denaturation.

Monomer

Dimer 40%



Common properties of protein-
protein interactions.

« Majority of protein complexes have a buried
surface area ~1600£400 Ar2 (“standard size”
patch).

« Complexes of “standard size” do not involve
large conformational changes while large
complexes do.

* Protein recognition site consists of a completely
buried core and a partially accessible rim.

Bottom molecule



Amino acid composition of different
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Properties of different types of
Interfaces

Non-obligate complexes tend to be more hydrophilic.

Hydrophobic groups tend to be burried upon complex
formation.

Electrostatics, hydrogen bonds, salt bridges confer
specificity.

Permanent interfaces tend to be larger, less planar, and
tightly packed.



Classification of interfaces

Similar interfaces- dissimilar functions

1dz1AB

Chromatin, Mouse hpl (m31) C
terminal domain Human transaldolase

Keskin, Gursoy, Nussinov, PRISM



Binding hot spots

e |nterface sites which contribute
the most to binding energy
(>2kcal/mol).

Mutation
frequency

E <0.5%

 Amino Acid composition:
aromatic, Thr, Ser, Cys.

1-2% &
2-4%
4-11%

« Structurally and sequence
conserved



Why do we need to identify binding
hotspots?

« To understand how proteins bind to different partners —
“binding promiscuity”

Interaction between GTPase domain and GEF

Tyagi et al, Protein Science 2009



Why do we need to identify binding
hotspots?

« To target protein-protein interfaces by small molecule
drugs




High-throughput methods to detect protein-
protein interactions

Yeast two hybrid

Tandem Affinity Purification

Protein Microarray
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Shoemaker & Panchenko, PloS Comp Biol, 2007



Yeast two-hybrid experiments.

« Many transcription factors (ex: Gal4,
LexA) have two distinct domains;
one that directs binding to a
promoter DNA sequence (BD) and
another that activates transcription
(AD).

* Fields and Song (1989)
demonstrated that DNA-binding | |
domain can not activate transcription '
at a promoter unless physically (not
necessarily covalently) associated
with an activating domain.

»
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Causier, Mass Spectroscopy Reviews, 2004



Low-throuput biophysical methods

« X-ray crystallography, NMR

 Fluorescence resonance energy transfer
(FRET)

« Surface plasmon resonance (SPR)
* |sothermal titration calorimetry (ITC)
« Atomic force microscopy



Resolving atomic details of interaction
Interfaces

X-ray, NMR — atomic details of
binding interfaces — stored in
Protein Databank, PDB




Prediction of protein-protein
Interactions



Methods of prediction of functional
assoclations and protein interactions

Method Name

Protein/Domain Physical Interaction/

Interaction Functional Association
Gene co-expression P F
Synthetic lethality P F
Gene cluster and gene neighbor P F
Phylogenetic profile P,D F
Rosetta Stone P F
Sequence co-evolution P,D F
Classification P,D P
Integrative P,D P
Domain association D P
Bayesian networks P,D F, P
Domain pair exclusion D P
p-Value D P
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Phylogenetic profile method.

Functionally linked and putative interacting
proteins should have orthologs in the same
subset of fully sequenced organisms
(Pellegrini et al, PNAS 1999).

Drawbacks:
* high computational cost;

« dependence on homology detection
between distant organisms;

« ubiquitous unlinked proteins present in all
genomes — false positives;

« shared phylogenetic history between two
proteins — false positives.
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Rosetta Stone approach.

« Some pairs of interacting domains
have homologs which are fused into
one protein chain — “Rosetta Stone”
protein (Marcotte et al, Science,
1999).

* In E.coli ~ 6809 pairs of non-
homologous proteins; both proteins
from each pair could be mapped to a
single protein from some other
genome.
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Gene neighborhood method.

« (Gene pairs from conserved gene
clusters encode proteins which are
functionally related and possibly

Interact.
: 26
« Conservation of gene order can be /..\ @ 90
used to predict gene function. e e 'G°"°me3' Gny
@e

« Analysis of gene order
conservation : 65%—75% of co-
regulated genes interact physically
(prediction of archael exosome by
comparing GN In archaea, Koonin
et al, Genome Res 2001)

Bowers et al, Genome Biology, 2004
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Gene cluster method.

« Bacterial genes of related function are often transcribed
simultaneously — operon.

 ldentification of operons is based on intergenic
distances.

—— A [ B C:-:-:
A A A

(P=0.015) (P=0.003) (P=0.43)
Bowers et al, Genome Biology, 2004
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Coevolution of interacting proteins —
“mirrortree” methods.

Interacting proteins may co-evolve and their phylogenetic trees
show similarity (Goh et al, J.Mol.Biol.,2000).

Similarity between phylogenetic trees is measured by correlation
coefficient between distance matrices.

Signal comes from both correlated evolution of binding sites and
whole protein sequence (Kann et al, JIMB 2009).
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Interface design

Computationally alter interface to modify
function

Create useful properties
Alter oligomeric state
Alter specificity

- . A Random docking Place motif Core packin
Novel interactions i
@ @ @ml' .
3 -
B
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Pdar-Pri> compl Pdar designed surface Prib designed surface

Karanicolas et al, Mol Cell, 2011
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Evolution of protein interactions
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Interactions.
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Mechanisms of evolution of novel interfaces

Gene duplication with
subsequent diversification

Types of duplication

(Pereira-Leal and Teichmann, Partial —
Genome Res, 2005: Reid et al, [O 3
BMC Genomics, 2010) - ”

Domain shuffling

Point mutations on interfaces

FTase GGTase | RabGGTase

Insertions and deletions

Other



Evolutionary mechanisms to form oligomers

Domain swapping Leu zipper



Evolutionary mechanisms to form
oligomers
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Mutations on interface Insertions/deletions



Evolution of new specificity through
oligomerization

Invertebrates Vertebrates

human p73
< ': human p63

Stabilization of p63/p73
tetramer leads to
separation of their
pathways from p53
pathway

human p53

JoergerA C et al. PNAS 2009;106:17705-17710



Assembly pathway mimics the
evolutionary pathway

a One patch per interface
face-to-face ® or back-to-back @
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Evolution of homooligomeric binding modes:
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Conservation of binding modes In
evolution

Logarithm of probability ratio for finding

phylogenetic tree
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Lineage specific < 300MYa > 300MYa

binding modes are well conserved
within phylogenetic clades sharing more
than 50% sequence identity

lineage-specific binding modes are
smaller, less stable. Newer interactions
are weaker



Role of Insertions and deletions in formation of

oligomers

“enabling” and “disabling” loops (Akiva et al,
PNAS 2008)

Insertions/deletions occur more frequently or
the interface than on the surface (P- X
value « 10e-7) — “enabling” and “disabling =
regions”

YLRVNALLADKLLPLLO=======DDDIITWIHDYHLLEPFAHEL

25% homooligomers have enabling and

disabling regions; . &3
M Loop M o-helix M [B-strand

[+}
54% 11% 59%

they contain more polar and 37% 30%
charged residues, Gly and Pro
than “conventional interfaces”

Enabling Disabling

Hashimoto & Panchenko, PNAS 2010



@® Enabling region in homodimer (1P3C)
@0 Aligned region in monomer (1FQ3)




Disabling regions

Glycogenin glucosyltransferase,

Eukaryotes, dimer

1LL2:
1GSR:

1LL2:
1GSR:

disrupting features

Bacteria, monomer

15¢ FDGGDQGLLNTFFNSWattdi rKHLPFIYNLSSISIYSYlpafk-——-———————- afgaNAK 209

184 XQYQDQDILNGLFKGGV

CYANSRENFXPTINYAFXanwfaSENEODIYEGEE"tvxEVA 241



Prediction of oligomeric states from

seguence
Enabling/disabling 0.70 0.74 0.94 0.36
features
% identity 0.71 0.62 0.91 0.38
RMSD 0.72 0.60 0.90 0.40
GSAS 0.81 0.57 0.91 0.43

BLAST 0.74 0.53 0.89 0.47



Regulation of protein-protein
binding



Mechanisms of regulation

 Avallability/abundance

- Gene expression, translation
- Translocation of proteins or
substrates

- Turnover

* Proteolytic activation
* Inteins



Mechanisms of protein regulation

State T > State R

N active

inactive

- Regulation by another protein or small molecule
- Reversible covalent post-translational modifications
- Allosteric activation and inhibition



Mechanisms of protein regulation

Transitions between different oligomeric states

K — [A]" x[B}’ _ g AGus/RT
ABy A + B d [AB,]

active inactive Dissociation constant
_ K _ KAC

AB+C <«<—— AC+B BC — K
AB

Binding selectivity constant



Allosteric regulation

binding of ligand (L1) causes a
conformational change in
subunit B

conformational change in B
alters binding site on subunit A

second ligand molecule (L2)
binds more readily to subunit A

g g g - 3

@ 1999-2004 New Science Press

RR



Signal transduction through protein-protein
Interactions and post-translational
modifications

Insulin-like growth factor Epidermal Growth Factor Guanine nucleotide Exchange Factors (GEFs)




Protein control through covalent
modifications

* 50-90% of human proteins IS post-
translationaly modified

e over 40 different modifications have been
described

* most important: phosphorylation,
glicosylation, lipidation, methylation, N-
acetylation, S-nitrosylation, SUMOilation



FHA and more ...

PROTEIN
RECOGNITION

~ PROTEIN
DISSOCIATION

ORDER-DISORDER
TRANSITION



Smad2-MH2 trimer: phospho-group
promotes the trimer formation

Nishi et al, submitted



Effect of

phosphorylation/dephosphorylation on
Smad complex formation

SSXS
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Protein-protein interaction
databases



Data flow In protein interaction databases

Protein A Protein B

yE=




Protein interaction databases

Database Proteins/Domains Type Number of Interactions
DIP?, LiveDIP P s 55,733

BIND? P E.C,S 83,517
MPact/MIPS? P ECF 15,488 (4,300)°
STRING P EP.F 730,000 (proteins)
MINT? P EC 71,854

IntAct® P E,C 68,165

BioGRID? P EC 116,000 (30,000)°
HPRD P E,C 33,710

ProtCom P,D S,H 1,770

3did, Interprets D SH 3,304

Pibase, ModBase D S.H 2,387

CBM D S 2,784

SCOPPI D S 3,358

iPfam D S 3,019

InterDom D P 30,037

DIMA D S —

Prolinks P F —




Human

All

BIOGRID, Stark et al, NAR 2011

PHYSICAL
GENETIC

COMBINED

PHYSICAL
GENETIC

COMBINED

60570
513

61083

204613
184715

389328

39635
489

39938

140813
132714

267879

10259
525

10448

31754
9420

33563

12411
198

12470

20369
8827

26894



IBIS — NCBI server to analyze and infer

Interactions and binding sites
http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi

— from structures

— from homologous structures with
observed interactions

occurs in several non-redundant homologs;
structurally and sequence conserved,

binds biologically active molecules;

validated by PISA algorithm (Krissinel & Henrick,2007);
overlaps with the curated binding site

Shoemaker et al, NAR 2010
Thangudu et al, BMC Bioinformatics, 2010
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Growth of IBIS data over 2010

Protein-Protein Interactions
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Human 20,846 proteins

Proteome

{

C NN NN N * ]
query sequence \

map query sequence to
homologous proteins in known
structural complexes

infer interaction partners of protein
mapped to query; find all
homologous conserved interactions

mhumn observed self- inferred from

complex interaction other organism

g 0

map Cto
to human homologous
human gene

3,614 human genes
13,217 interactions




Jaccard distance

Comparison of structurally inferred (Sl),

hig

0.95

h-throughput (HTP) and high confidence
HTP (HC) networks

- - Inference threshold
_ — similarity between

mlhad 2 & guery protein and

- closest homolog with

HTP/SI known complex
HC/sI

T T T T T T T T T T T T T T |
30 35 40 45 50 55 60 65 70 75 80 85 90 95100

threshold inference

Tyagi et al, submitted



Structurally inferred networks are more
functionally coherent than high-throughput

networks
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“Merged” networks =
structurally inferred (SI)
+ high confidence high-
throughput (HC), ~5500
T proteins and ~17000

= interactions

Sland HC complement
each other; ~20% of HC
Interactions are
observed in Sl and ~50%
Sl interactions are
observed in HC

== overlap
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